转载自 JavaChen Blog ,作者: Junez
本文主要记录最近一段时间学习和实现Spark MLlib中的协同过滤的一些总结,希望对大家熟悉Spark ALS算法有所帮助。
更新:
【2016.06.12】Spark1.4.0中MatrixFactorizationModel提供了recommendForAll方法实现离线批量推荐,见 SPARK-3066 。
测试环境 为了测试简单,在本地以local方式运行Spark,你需要做的是下载编译好的压缩包解压即可,可以参考 Spark本地模式运行 。
测试数据使用 MovieLens 的 MovieLens 10M 数据集,下载之后解压到data目录。数据的格式请参考README中的说明,需要注意的是ratings.dat中的数据被处理过, 每个用户至少访问了20个商品 。
下面的代码均在spark-shell中运行,启动时候可以根据你的机器内存设置JVM参数,例如:
bin/spark-shell --executor-memory 3 g --driver-memory 3 g --driver-java-options '-Xms2g -Xmx2g -XX:+UseCompressedOops'
预测评分 这个例子主要演示如何训练数据、评分并计算根均方差。
准备工作 首先,启动spark-shell,然后引入mllib包,我们需要用到ALS算法类和Rating评分类:
import org.apache.spark.mllib.recommendation.{ALS, Rating}
Spark的日志级别默认为INFO,你可以手动设置为WARN级别,同样先引入log4j依赖:
import org.apache.log4j.{Logger,Level}
然后,运行下面代码:
Logger.getLogger( "org.apache.spark" ).setLevel(Level.WARN)
Logger.getLogger( "org.eclipse.jetty.server" ).setLevel(Level.OFF)
加载数据 spark-shell启动成功之后,sc为内置变量,你可以通过它来加载测试数据:
val data = sc.textFile( "data/ml-1m/ratings.dat" )
接下来解析文件内容,获得用户对商品的评分记录:
val ratings = data.map(_.split( "::" ) match { case Array(user, item, rate, ts) =>
Rating(user.toInt, item.toInt, rate.toDouble)
}).cache()
查看第一条记录:
scala> ratings.first
res81: org.apache.spark.mllib.recommendation.Rating = Rating( 1 , 1193 , 5.0 )
我们可以统计文件中用户和商品数量:
val users = ratings.map(_.user).distinct()
val products = ratings.map(_.product).distinct()
println( "Got " +ratings.count()+ " ratings from " +users.count+ " users on " +products.count+ " products." )
可以看到如下输出:
//Got 1000209 ratings from 6040 users on 3706 products.
你可以对评分数据生成训练集和测试集,例如:训练集和测试集比例为8比2:
val splits = ratings.randomSplit(Array( 0.8 , 0.2 ), seed = 111 l)
val training = splits( 0 ).repartition(numPartitions)
val test = splits( 1 ).repartition(numPartitions)
这里,我们是将评分数据全部当做训练集,并且也为测试集。
训练模型 接下来调用 ALS.train()
方法,进行模型训练:
val rank = 12
val lambda = 0.01
val numIterations = 20
val model = ALS.train(ratings, rank, numIterations, lambda)
训练完后,我们看看model中的用户和商品特征向量:
model.userFeatures
model.userFeatures.count
//res84: Long = 6040
model.productFeatures
model.productFeatures.count
//res86: Long = 3706
评测 我们要对比一下预测的结果,注意:我们将 训练集当作测试集 来进行对比测试。从训练集中获取用户和商品的映射:
val usersProducts= ratings.map { case Rating(user, product, rate) =>
(user, product)
}
显然,测试集的记录数等于评分总记录数,验证一下:
usersProducts.count //Long = 1000209
使用推荐模型对用户商品进行预测评分,得到预测评分的数据集:
var predictions = model.predict(usersProducts).map { case Rating(user, product, rate) =>
((user, product), rate)
}
查看其记录数:
predictions.count //Long = 1000209
将真实评分数据集与预测评分数据集进行合并,这样得到用户对每一个商品的实际评分和预测评分:
val ratesAndPreds = ratings.map { case Rating(user, product, rate) =>
((user, product), rate)
}.join(predictions)
ratesAndPreds.count //Long = 1000209
然后计算根均方差:
val rmse= math.sqrt(ratesAndPreds.map { case ((user, product), (r1, r2)) =>
val err = (r1 - r2)
err * err
}.mean())
println(s "RMSE = $rmse" )
上面这段代码其实就是 对测试集进行评分预测并计算与实际评分的相似度 ,这段代码可以抽象为一个方法,如下:
/** Compute RMSE (Root Mean Squared Error). */
def computeRmse(model: MatrixFactorizationModel, data: RDD[Rating]) = {
val usersProducts = data.map { case Rating(user, product, rate) =>
(user, product)
}
val predictions = model.predict(usersProducts).map { case Rating(user, product, rate) =>
((user, product), rate)
}
val ratesAndPreds = data.map { case Rating(user, product, rate) =>
((user, product), rate)
}.join(predictions)
math.sqrt(ratesAndPreds.map { case ((user, product), (r1, r2)) =>
val err = (r1 - r2)
err * err
}.mean())
}
除了RMSE指标,我们还可以计算AUC以及Mean average precision at K (MAPK),关于AUC的计算方法,参考 RunRecommender.scala ,关于MAPK的计算方法可以参考 《Packt.Machine Learning with Spark.2015.pdf》 一书第四章节内容,或者你可以看本文后面内容。
保存真实评分和预测评分 我们还可以保存用户对商品的真实评分和预测评分记录到本地文件:
ratesAndPreds.sortByKey().repartition( 1 ).sortBy(_._1).map({
case ((user, product), (rate, pred)) => (user + "," + product + "," + rate + "," + pred)
}).saveAsTextFile( "/tmp/result" )
上面这段代码先按用户排序,然后重新分区确保目标目录中只生成一个文件。如果你重复运行这段代码,则需要先删除目标路径:
import scala.sys.process._
"rm -r /tmp/result" .!
我们还可以对预测的评分结果按用户进行分组并按评分倒排序:
predictions.map { case ((user, product), rate) =>
(user, (product, rate))
}.groupByKey(numPartitions).map{ case (user_id,list)=>
(user_id,list.toList.sortBy { case (goods_id,rate)=> - rate})
}
给一个用户推荐商品 这个例子主要是记录如何给一个或大量用户进行推荐商品,例如,对用户编号为384的用户进行推荐,查出该用户在测试集中评分过的商品。
找出5个用户:
users.take( 5 )
//Array[Int] = Array(384, 1084, 4904, 3702, 5618)
查看用户编号为384的用户的预测结果中预测评分排前10的商品:
val userId = users.take( 1 )( 0 ) //384
val K = 10
val topKRecs = model.recommendProducts(userId, K)
println(topKRecs.mkString( "/n" ))
// Rating(384,2545,8.354966018818265)
// Rating(384,129,8.113083736094676)
// Rating(384,184,8.038113395650853)
// Rating(384,811,7.983433591425284)
// Rating(384,1421,7.912044967873945)
// Rating(384,1313,7.719639594879865)
// Rating(384,2892,7.53667094600392)
// Rating(384,2483,7.295378004543803)
// Rating(384,397,7.141158013610967)
// Rating(384,97,7.071089782695754)
查看该用户的评分记录:
val goodsForUser=ratings.keyBy(_.user).lookup( 384 )
productsForUser.size //Int = 22
productsForUser.sortBy(-_.rating).take( 10 ).map(rating => (rating.product, rating.rating)).foreach(println)
// (593,5.0)
// (1201,5.0)
// (3671,5.0)
// (1304,5.0)
// (1197,4.0)
// (3037,4.0)
// (1610,4.0)
// (3074,4.0)
// (204,4.0)
// (260,4.0)
可以看到该用户对22个商品评过分以及浏览的商品是哪些。
我们可以该用户对某一个商品的实际评分和预测评分方差为多少:
val actualRating = productsForUser.take( 1 )( 0 )
val predictedRating = model.predict( 384 , actualRating.product)
//predictedRating: Double = 1.9426030777174637
val squaredError = math.pow(predictedRating - actualRating.rating, 2.0 )
//squaredError: Double = 0.0032944066875075172
如何找出和一个已知商品最相似的商品呢?这里,我们可以使用余弦相似度来计算:
import org.jblas.DoubleMatrix
/* Compute the cosine similarity between two vectors */
def cosineSimilarity(vec1: DoubleMatrix, vec2: DoubleMatrix): Double = {
vec1.dot(vec2) / (vec1.norm2() * vec2.norm2())
}
以2055商品为例,计算实际评分和预测评分相似度
val itemId = 2055
val itemFactor = model.productFeatures.lookup(itemId).head
val itemVector = new DoubleMatrix(itemFactor)
cosineSimilarity(itemVector, itemVector)
// res99: Double = 0.9999999999999999
找到和该商品最相似的10个商品:
val sims = model.productFeatures.map{ case (id, factor) =>
val factorVector = new DoubleMatrix(factor)
val sim = cosineSimilarity(factorVector, itemVector)
(id, sim)
}
val sortedSims = sims.top(K)(Ordering.by[(Int, Double), Double] { case (id, similarity) => similarity })
println(sortedSims.mkString( "/n" ))
// (2055,0.9999999999999999)
// (2051,0.9138311231145874)
// (3520,0.8739823400539756)
// (2190,0.8718466671129721)
// (2050,0.8612639515847019)
// (1011,0.8466911667526461)
// (2903,0.8455764332511272)
// (3121,0.8227325520485377)
// (3674,0.8075743004357392)
// (2016,0.8063817280259447)
显然第一个最相似的商品即为该商品本身,即2055,我们可以修改下代码,取前k+1个商品,然后排除第一个:
val sortedSims2 = sims.top(K + 1 )(Ordering.by[(Int, Double), Double] { case (id, similarity) => similarity })
sortedSims2.slice( 1 , 11 ).map{ case (id, sim) => (id, sim) }.mkString( "/n" )
// (2051,0.9138311231145874)
// (3520,0.8739823400539756)
// (2190,0.8718466671129721)
// (2050,0.8612639515847019)
// (1011,0.8466911667526461)
// (2903,0.8455764332511272)
// (3121,0.8227325520485377)
// (3674,0.8075743004357392)
// (2016,0.8063817280259447)
// (3672,0.8016276723120674)
接下来,我们可以计算给该用户推荐的前K个商品的平均准确度MAPK,该算法定义如下(该算法是否正确还有待考证):
def avgPrecisionK(actual: Seq[Int], predicted: Seq[Int], k: Int): Double = {
val predK = predicted.take(k)
var score = 0.0
var numHits = 0.0
for ((p, i) <- predK.zipWithIndex) {
if (actual.contains(p)) {
numHits += 1.0
score += numHits / (i.toDouble + 1.0 )
}
}
if (actual.isEmpty) {
1.0
} else {
score / scala.math.min(actual.size, k).toDouble
}
}
给该用户推荐的商品为:
val actualProducts = productsForUser.map(_.product)
给该用户预测的商品为:
val predictedProducts = topKRecs.map(_.product)
最后的准确度为:
val apk10 = avgPrecisionK(actualProducts, predictedProducts, 10 )
// apk10: Double = 0.0
批量推荐 你可以评分记录中获得所有用户然后依次给每个用户推荐:
val users = ratings.map(_.user).distinct()
users.collect.flatMap { user =>
model.recommendProducts(user, 10 )
}
这种方式是遍历内存中的一个集合然后循环调用RDD的操作,运行会比较慢,另外一种方式是直接操作model中的userFeatures和productFeatures,代码如下:
val itemFactors = model.productFeatures.map { case (id, factor) => factor }.collect()
val itemMatrix = new DoubleMatrix(itemFactors)
println(itemMatrix.rows, itemMatrix.columns)
//(3706,12)
// broadcast the item factor matrix
val imBroadcast = sc.broadcast(itemMatrix)
//获取商品和索引的映射
var idxProducts=model.productFeatures.map { case (prodcut, factor) => prodcut }.zipWithIndex().map{ case (prodcut, idx) => (idx,prodcut)}.collectAsMap()
val idxProductsBroadcast = sc.broadcast(idxProducts)
val allRecs = model.userFeatures.map{ case (user, array) =>
val userVector = new DoubleMatrix(array)
val scores = imBroadcast.value.mmul(userVector)
val sortedWithId = scores.data.zipWithIndex.sortBy(-_._1)
//根据索引取对应的商品id
val recommendedProducts = sortedWithId.map(_._2).map{idx=>idxProductsBroadcast.value.get(idx).get}
(user, recommendedProducts)
}
这种方式其实还不是最优方法,更好的方法可以参考 Personalised recommendations using Spark ,当然这篇文章中的代码还可以继续优化一下。我修改后的代码如下,供大家参考:
val productFeatures = model.productFeatures.collect()
var productArray = ArrayBuffer[Int]()
var productFeaturesArray = ArrayBuffer[Array[Double]]()
for ((product, features) <- productFeatures) {
productArray += product
productFeaturesArray += features
}
val productArrayBroadcast = sc.broadcast(productArray)
val productFeatureMatrixBroadcast = sc.broadcast( new DoubleMatrix(productFeaturesArray.toArray).transpose())
start = System.currentTimeMillis()
val allRecs = model.userFeatures.mapPartitions { iter =>
// Build user feature matrix for jblas
var userFeaturesArray = ArrayBuffer[Array[Double]]()
var userArray = new ArrayBuffer[Int]()
while (iter.hasNext) {
val (user, features) = iter.next()
userArray += user
userFeaturesArray += features
}
var userFeatureMatrix = new DoubleMatrix(userFeaturesArray.toArray)
var userRecommendationMatrix = userFeatureMatrix.mmul(productFeatureMatrixBroadcast.value)
var productArray=productArrayBroadcast.value
var mappedUserRecommendationArray = new ArrayBuffer[String](params.topk)
// Extract ratings from the matrix
for (i <- 0 until userArray.length) {
var ratingSet = mutable.TreeSet.empty(Ordering.fromLessThan[(Int,Double)](_._2 > _._2))
for (j <- 0 until productArray.length) {
var rating = (productArray(j), userRecommendationMatrix.get(i,j))
ratingSet += rating
}
mappedUserRecommendationArray += userArray(i)+ "," +ratingSet.take(params.topk).mkString( "," )
}
mappedUserRecommendationArray.iterator
}
2015.06.12 更新:
悲哀的是,上面的方法还是不能解决问题,因为矩阵相乘会撑爆集群内存;可喜的是,如果你关注Spark最新动态,你会发现Spark1.4.0中MatrixFactorizationModel提供了 recommendForAll
方法实现离线批量推荐,详细说明见 SPARK-3066 。因为,我使用的Hadoop版本是CDH-5.4.0,其中Spark版本还是1.3.0,所以暂且不能在集群上测试Spark1.4.0中添加的新方法。
如果上面结果跑出来了,就可以验证推荐结果是否正确
。还是以384用户为例:
allRecs.lookup( 384 ).head.take( 10 )
topKRecs.map(_.product)
接下来,我们可以计算所有推荐结果的准确度了,首先,得到每个用户评分过的所有商品:
val userProducts = ratings.map{ case Rating(user, product, rating) => (user, product) }.groupBy(_._1)
然后,预测的商品和实际商品关联求准确度:
val MAPK = allRecs.join(userProducts).map{ case (userId, (predicted, actualWithIds)) =>
val actual = actualWithIds.map(_._2).toSeq
avgPrecisionK(actual, predicted, K)
}.reduce(_ + _) / allRecs.count
println( "Mean Average Precision at K = " + MAPK)
//Mean Average Precision at K = 0.018827551771260383
其实,我们也可以使用Spark内置的算法计算RMSE和MAE:
// MSE, RMSE and MAE
import org.apache.spark.mllib.evaluation.RegressionMetrics
val predictedAndTrue = ratesAndPreds.map { case ((user, product), (actual, predicted)) => (actual, predicted) }
val regressionMetrics = new RegressionMetrics(predictedAndTrue)
println( "Mean Squared Error = " + regressionMetrics.meanSquaredError)
println( "Root Mean Squared Error = " + regressionMetrics.rootMeanSquaredError)
// Mean Squared Error = 0.5490153087908566
// Root Mean Squared Error = 0.7409556726220918
// MAPK
import org.apache.spark.mllib.evaluation.RankingMetrics
val predictedAndTrueForRanking = allRecs.join(userProducts).map{ case (userId, (predicted, actualWithIds)) =>
val actual = actualWithIds.map(_._2)
(predicted.toArray, actual.toArray)
}
val rankingMetrics = new RankingMetrics(predictedAndTrueForRanking)
println( "Mean Average Precision = " + rankingMetrics.meanAveragePrecision)
// Mean Average Precision = 0.04417535679520426
计算推荐2000个商品时的准确度为:
val MAPK2000 = allRecs.join(userProducts).map{ case (userId, (predicted, actualWithIds)) =>
val actual = actualWithIds.map(_._2).toSeq
avgPrecisionK(actual, predicted, 2000 )
}.reduce(_ + _) / allRecs.count
println( "Mean Average Precision = " + MAPK2000)
//Mean Average Precision = 0.025228311843069083
保存和加载推荐模型 对与实时推荐,我们需要启动一个web server,在启动的时候生成或加载训练模型,然后提供API接口返回推荐接口,需要调用的相关方法为:
save(model: MatrixFactorizationModel, path: String)
load(sc: SparkContext, path: String)
model中的userFeatures和productFeatures也可以保存起来:
val outputDir= "/tmp"
model.userFeatures.map{ case (id, vec) => id + "/t" + vec.mkString( "," ) }.saveAsTextFile(outputDir + "/userFeatures" )
model.productFeatures.map{ case (id, vec) => id + "/t" + vec.mkString( "," ) }.saveAsTextFile(outputDir + "/productFeatures" )
总结 本文主要记录如何使用ALS算法实现协同过滤并给用户推荐商品,以上代码在Github仓库中的 ScalaLocalALS.scala 文件。
如果你想更加深入了解Spark MLlib算法的使用,可以看看 Packt.Machine Learning with Spark.2015.pdf 这本电子书并下载书中的源码,本文大部分代码参考自该电子书。
参考资料