Given a sequence of integers S = {S1, S2, . . . , Sn}, you should determine what is the value of the maximum positive product involving consecutive terms of S. If you cannot find a positive sequence, you should consider 0 as the value of the maximum product.
Input
Each test case starts with 1 ≤ N ≤ 18, the number of elements in a sequence. Each element Si is an integer such that −10 ≤ Si ≤ 10. Next line will have N integers, representing the value of each element in the sequence. There is a blank line after each test case. The input is terminated by end of file (EOF).
Output
For each test case you must print the message: ‘Case #M: The maximum product is P.’, where M is the number of the test case, starting from 1, and P is the value of the maximum product. After each test case you must print a blank line.
Sample Input
3 2 4 -3 5 2 5 -1 2 -1
Sample Output
Case #1: The maximum product is 8.
Case #2: The maximum product is 20.
题意:
输入n个元素组成的序列S,你需要找出一个乘积最大的连续子序列。如果这个最大的乘积不是正数,应输出0(表示无解)。每个案例要用空格隔开。
题解:
连续子序列有两个要素:起点和终点,因此只需枚举起点和终点即可。
只要给最大值赋初值0,大于0才给最大值重新赋值,则任何负数最后输出都会为0,不需分开考虑。
注意:最大值要用long long类。
#include<iostream> #include<cstdio> using namespace std; int a[30]; int main() { int k=0,t; while(scanf("%d",&t)==1) { long long maxn=0; for(int i=0; i<t; i++) cin>>a[i]; for(int i=0; i<t; i++) { long long q=1; for(int j=i; j<t; j++) { q=q*a[j]; if(q>maxn) maxn=q; } } k++; printf("Case #%d: The maximum product is %lld./n",k,maxn); printf("/n"); // 注意格式啊 } return 0; }