转载

K-均值聚类算法

K-均值聚类算法

聚类是一种无监督的学习算法,它将相似的数据归纳到同一簇中。K-均值是因为它可以按照k个不同的簇来分类,并且不同的簇中心采用簇中所含的均值计算而成。

K-均值算法

算法思想

K-均值是把数据集按照k个簇分类,其中k是用户给定的,其中每个簇是通过质心来计算簇的中心点。

主要步骤:

  • 随机确定k个初始点作为质心
  • 对数据集中的每个数据点找到距离最近的簇
  • 对于每一个簇,计算簇中所有点的均值并将均值作为质心
  • 重复步骤2,直到任意一个点的簇分配结果不变

    具体实现

from numpy import * import matplotlib import matplotlib.pyplot as plt def loadDataSet(fileName):   #general function to parse tab -delimited floats  dataMat = []    #assume last column is target value  fr = open(fileName)  for line in fr.readlines():   curLine = line.strip().split('/t')   fltLine = map(float,curLine) #map all elements to float()   dataMat.append(fltLine)  return dataMat def distEclud(vecA, vecB):  return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB) def randCent(dataSet, k):  n = shape(dataSet)[1]  centroids = mat(zeros((k,n)))#create centroid mat  for j in range(n):#create random cluster centers, within bounds of each dimension   minJ = min(dataSet[:,j])    rangeJ = float(max(dataSet[:,j]) - minJ)   centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))  return centroids def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):  m = shape(dataSet)[0]  clusterAssment = mat(zeros((m,2)))#create mat to assign data points             #to a centroid, also holds SE of each point  centroids = createCent(dataSet, k)  clusterChanged = True  while clusterChanged:   clusterChanged = False   for i in range(m):#for each data point assign it to the closest centroid    minDist = inf; minIndex = -1    for j in range(k):     distJI = distMeas(centroids[j,:],dataSet[i,:])     if distJI < minDist:      minDist = distJI; minIndex = j    if clusterAssment[i,0] != minIndex: clusterChanged = True    clusterAssment[i,:] = minIndex,minDist**2   for cent in range(k):#recalculate centroids    ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster    centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean     print ptsInClust    print mean(ptsInClust, axis=0)     return  return centroids, clusterAssment def clusterClubs(numClust=5):  datList = []  for line in open('places.txt').readlines():   lineArr = line.split('/t')   datList.append([float(lineArr[4]), float(lineArr[3])])  datMat = mat(datList)  myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)  fig = plt.figure()  rect=[0.1,0.1,0.8,0.8]  scatterMarkers=['s', 'o', '^', '8', 'p', /      'd', 'v', 'h', '>', '<']  axprops = dict(xticks=[], yticks=[])  ax0=fig.add_axes(rect, label='ax0', **axprops)  imgP = plt.imread('Portland.png')  ax0.imshow(imgP)  ax1=fig.add_axes(rect, label='ax1', frameon=False)  for i in range(numClust):   ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]   markerStyle = scatterMarkers[i % len(scatterMarkers)]   ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)  ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)  plt.show() 

结果

K-均值聚类算法

算法收敛

设目标函数为

$$J(c, /mu) = /sum _{i=1}^m (x_i - /mu_{c_{(i)}})^2$$

Kmeans算法是将J调整到最小,每次调整质心,J值也会减小,同时c和$/mu$也会收敛。由于该函数是一个非凸函数,所以不能保证得到全局最优,智能确保局部最优解。

二分K均值算法

为了克服K均值算法收敛于局部最小值的问题,提出了二分K均值算法。

算法思想

该算法首先将所有点作为一个簇,然后将该簇一分为2,之后选择其中一个簇继续进行划分,划分规则是按照最大化SSE(目标函数)的值。

主要步骤:

  • 将所有点看成一个簇
  • 计算每一个簇的总误差
  • 在给定的簇上进行K均值聚类,计算将簇一分为二的总误差
  • 选择使得误差最小的那个簇进行再次划分
  • 重复步骤2,直到簇的个数满足要求

具体实现

def biKMeans(dataSet, k, distMeans=distEclud):  m, n = shape(dataSet)  clusterAssment = mat(zeros((m, 2))) # init all data for index 0  centroid = mean(dataSet, axis=0).tolist()  centList = [centroid]  for i in range(m):   clusterAssment[i, 1] = distMeans(mat(centroid), dataSet[i, :]) ** 2  while len(centList) < k:   lowestSSE = inf   for i in range(len(centList)):    cluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0], :] # get the clust data of i    centroidMat, splitCluster = kMeans(cluster, 2, distMeans)    sseSplit = sum(splitCluster[:, 1]) #all sse    sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0], 1]) # error sse    #print sseSplit, sseNotSplit    if sseSplit + sseNotSplit < lowestSSE:     bestCentToSplit = i     bestNewCent = centroidMat     bestClust = splitCluster.copy()     lowerSEE = sseSplit + sseNotSplit   print bestClust   bestClust[nonzero(bestClust[:, 0].A == 1)[0], 0] = len(centList)   bestClust[nonzero(bestClust[:, 0].A == 0)[0], 0] = bestCentToSplit   print bestClust   print 'the bestCentToSplit is: ',bestCentToSplit   print 'the len of bestClustAss is: ', len(bestClust)   centList[bestCentToSplit] = bestNewCent[0, :].tolist()[0]   centList.append(bestNewCent[1, :].tolist()[0])   print clusterAssment   clusterAssment[nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClust   print clusterAssment  return mat(centList), clusterAssment  

结果

K-均值聚类算法

正文到此结束
Loading...