转载

机器学习(二)——K-均值聚类(K-means)算法

最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习,在写这篇文章之前对FCM有过一定的了解,所以对K均值算法有一种莫名的亲切感,言归正传,今天我和大家一起来学习K-均值聚类算法。

一 K-均值聚类(K-means)概述

1. 聚类

“类”指的是具有相似性的集合。聚类是指将数据集划分为若干类,使得类内之间的数据最为相似,各类之间的数据相似度差别尽可能大。聚类分析就是以相似性为基础,对数据集进行聚类划分,属于无监督学习。

2. 无监督学习和监督学习

上一篇对KNN进行了验证, 和KNN所不同,K-均值聚类属于无监督学习。那么监督学习和无监督学习的区别在哪儿呢?监督学习知道从对象(数据)中学习什么,而无监督学习无需知道所要搜寻的目标,它是根据算法得到数据的共同特征。比如用分类和聚类来说,分类事先就知道所要得到的类别,而聚类则不一样,只是以相似度为基础,将对象分得不同的簇。

3. K-means

k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从 而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。 对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化:

                                            机器学习(二)——K-均值聚类(K-means)算法

结合最小二乘法和拉格朗日原理,聚类中心为对应类别中各数据点的平均值,同时为了使得算法收敛,在迭代过程中,应使最终的聚类中心尽可能的不变。

4. 算法流程

K-means是一个反复迭代的过程,算法分为四个步骤:

1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;

2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离离它们最近的聚类中心(最相似)所对应的类;

3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值;

4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)。

用以下例子加以说明:

机器学习(二)——K-均值聚类(K-means)算法 机器学习(二)——K-均值聚类(K-means)算法

图1 图2

机器学习(二)——K-均值聚类(K-means)算法 机器学习(二)——K-均值聚类(K-means)算法

图3 图4

图1:给定一个数据集;

图2:根据K = 5初始化聚类中心,保证 聚类中心处于数据空间内;

图3:根据计算类内对象和聚类中心之间的相似度指标,将数据进行划分;

图4:将类内之间数据的均值作为聚类中心,更新聚类中心。

最后判断算法结束与否即可,目的是为了保证算法的收敛。

二  python实现

首先,需要说明的是,我采用的是python3.4.3,和2.7还是有些出入。在此,用到了numpy和matplotlib库。

非常抱歉的是,装了许久的matplotlib,总是出现问题,无奈,这部分只能之后补全。

三 MATLAB实现

之前用MATLAB做过一些聚类算法方面的优化,自然使用它相比python更得心应手一点。根据算法的步骤,编程实现,直接上程序:

%%%K-means clear all clc %% 构造随机数据  mu1=[0 0 0];   S1=[0.23 0 0;0 0.87 0;0 0 0.56];  data1=mvnrnd(mu1,S1,100);   %产生高斯分布数据 %%第二类数据 mu2=[1.25 1.25 1.25]; S2=[0.23 0 0;0 0.87 0;0 0 0.56]; data2=mvnrnd(mu2,S2,100); %第三个类数据 mu3=[-1.25 1.25 -1.25]; S3=[0.23 0 0;0 0.87 0;0 0 0.56]; data3=mvnrnd(mu3,S3,100); mu4=[1.5 1.5 1.5]; S4=[0.23 0 0;0 0.87 0;0 0 0.56]; data4 =mvnrnd(mu4,S4,100); %显示数据 figure; plot3(data1(:,1),data1(:,2),data1(:,3),'+'); title('原始数据'); hold on plot3(data2(:,1),data2(:,2),data2(:,3),'r+'); plot3(data3(:,1),data3(:,2),data3(:,3),'g+'); plot3(data4(:,1),data4(:,2),data3(:,3),'y+'); grid on; data=[data1;data2;data3;data4];    [row,col] = size(data); K = 4; max_iter = 300;%%迭代次数 min_impro = 0.1;%%%%最小步长 display = 1;%%%判定条件 center = zeros(K,col); U = zeros(K,col); %% 初始化聚类中心 mi = zeros(col,1); ma = zeros(col,1); for i = 1:col  mi(i,1) = min(data(:,i));  ma(i,1) = max(data(:,i));  center(:,i) = ma(i,1) - (ma(i,1) - mi(i,1)) * rand(K,1); end %% 开始迭代 for o = 1:max_iter  %% 计算欧氏距离,用norm函数  for i = 1:K   dist{i} = [];   for j = 1:row    dist{i} = [dist{i};data(j,:) - center(i,:)];   end  end  minDis = zeros(row,K);  for i = 1:row   tem = [];   for j = 1:K    tem = [tem norm(dist{j}(i,:))];   end   [nmin,index] = min(tem);   minDis(i,index) = norm(dist{index}(i,:));  end  %% 更新聚类中心   for i = 1:K   for j = 1:col    U(i,j) = sum(minDis(:,i).*data(:,j)) / sum(minDis(:,i));   end   end   %% 判定    if display    end    if o >1,     if max(abs(U - center)) < min_impro;      break;     else      center = U;     end    end end  %% 返回所属的类别  class = [];  for i = 1:row   dist = [];   for j = 1:K    dist = [dist norm(data(i,:) - U(j,:))];   end   [nmin,index] = min(dist);   class = [class;data(i,:) index];  end  %% 显示最后结果 [m,n] = size(class); figure; title('聚类结果'); hold on; for i=1:row   if class(i,4)==1       plot3(class(i,1),class(i,2),class(i,3),'ro');   elseif class(i,4)==2    plot3(class(i,1),class(i,2),class(i,3),'go');   elseif class(i,4) == 3    plot3(class(i,1),class(i,2),class(i,3),'bo');   else   plot3(class(i,1),class(i,2),class(i,3),'yo');   end end grid on; 

最终的结果如下图5和图6:

机器学习(二)——K-均值聚类(K-means)算法 机器学习(二)——K-均值聚类(K-means)算法

图5 原始数据 图6 聚类结果 

总结 :在这次程序的调试中,其实出现的问题还是蛮多的,相似度指标依旧选用的是欧氏距离。在之前,一直是按照公式直接计算的,可欧氏距离其实就是2范数啊, 2范数属于酉不变范数,因此矩阵的2范数就是矩阵的最大奇异值,在求解过程中可以直接采用norm函数简化。

上图中的结果可以清晰的看到算法具有一定的聚类效果,要进一步验证的话,可以采取MCR或者NMI和ARI这些常用的准则进行衡量聚类结果的优劣,在此我选取MCR进行验证,代码如下:

%% 采用MCR判定聚类效果  B = class(:,4);  B = reshape(B,1,row);  A = [ones(1,100),2 * ones(1,100),3 *ones(1,100),4 * ones(1,100)];   sum = 0; for i = 1:row     if ( A(1,i) ~= B(1,i))         sum = sum + 1;     end end MCR = sum / row; fprintf('MCR = %d/n',MCR);

多次计算平均求得的MCR= 0.53,表明误分率还是蛮大的,聚类效果并不是很理想,究其原因:虽然算法收敛,但算法只是收敛到了局部最小值,而并非全局最小值,所以可以引入二分K-均值对算法进行优化。

除此之外,FCM算法在一定程度上也是对算法的一个优化吧。

进而导入UCI数据库中的wine数据进行测试,结果甚是不理想, 至于原因吧,算法本身的性能是占一部分的,还有可能是数据的维数相对较多......在此我也不敢妄加猜测,之后慢慢验证吧......

正文到此结束
Loading...