转载

深入理解Python中的生成器

生成器(generator)概念

生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束。

生成器语法

  1. 生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存。

    >>> gen = (x**2 for x in range(5)) >>> gen <generator object <genexpr> at 0x0000000002FB7B40> >>> for g in gen: ...   print(g, end='-') ... 0-1-4-9-16- >>> for x in [0,1,2,3,4,5]: ...   print(x, end='-') ... 0-1-2-3-4-5-
  2. 生成器函数: 在函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是生成器函数。

    但是生成器函数可以生产一个无线的序列,这样列表根本没有办法进行处理。

    yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator。

下面为一个可以无穷生产奇数的生成器函数。

def odd():  n=1  while True:   yield n   n+=2 odd_num = odd() count = 0 for o in odd_num:  if count >=5: break  print(o)  count +=1 

当然通过手动编写迭代器可以实现类似的效果,只不过生成器更加直观易懂

class Iter:  def __init__(self):   self.start=-1  def __iter__(self):   return self  def __next__(self):   self.start +=2    return self.start I = Iter() for count in range(5):  print(next(I)) 

题外话: 生成器是包含有__iter ()和 next__()方法的,所以可以直接使用for来迭代,而没有包含StopIteration的自编Iter来只能通过手动循环来迭代。

>>> from collections import Iterable >>> from collections import Iterator >>> isinstance(odd_num, Iterable) True >>> isinstance(odd_num, Iterator) True >>> iter(odd_num) is odd_num True >>> help(odd_num) Help on generator object:  odd = class generator(object)  |  Methods defined here:  |  |  __iter__(self, /)  |      Implement iter(self).  |  |  __next__(self, /)  |      Implement next(self).  ......

看到上面的结果,现在你可以很有信心的按照Iterator的方式进行循环了吧!

在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 与 return

在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;

>>> def g1(): ...     yield 1 ... >>> g=g1() >>> next(g)    #第一次调用next(g)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。 1 >>> next(g)    #程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常。 Traceback (most recent call last):   File "<stdin>", line 1, in <module> StopIteration >>>

如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

>>> def g2(): ...     yield 'a' ...     return ...     yield 'b' ... >>> g=g2() >>> next(g)    #程序停留在执行完yield 'a'语句后的位置。 'a' >>> next(g)    #程序发现下一条语句是return,所以抛出StopIteration异常,这样yield 'b'语句永远也不会执行。 Traceback (most recent call last):   File "<stdin>", line 1, in <module> StopIteration

如果在return后返回一个值,那么这个值为StopIteration异常的说明,不是程序的返回值。

生成器没有办法使用return来返回值。

>>> def g3(): ...     yield 'hello' ...     return 'world' ... >>> g=g3() >>> next(g) 'hello' >>> next(g) Traceback (most recent call last):   File "<stdin>", line 1, in <module> StopIteration: world    

生成器支持的方法

>>> help(odd_num) Help on generator object:  odd = class generator(object)  |  Methods defined here:  ......  |  close(...)  |      close() -> raise GeneratorExit inside generator.  |  |  send(...)  |      send(arg) -> send 'arg' into generator,  |      return next yielded value or raise StopIteration.  |  |  throw(...)  |      throw(typ[,val[,tb]]) -> raise exception in generator,  |      return next yielded value or raise StopIteration.  ......

close()

手动关闭生成器函数,后面的调用会直接返回StopIteration异常。

>>> def g4(): ...     yield 1 ...     yield 2 ...     yield 3 ... >>> g=g4() >>> next(g) 1 >>> g.close() >>> next(g)    #关闭后,yield 2和yield 3语句将不再起作用 Traceback (most recent call last):   File "<stdin>", line 1, in <module> StopIteration

send()

生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。这是生成器函数最难理解的地方,也是最重要的地方,实现后面我会讲到的协程就全靠它了。

def gen():  value=0  while True:   receive=yield value   if receive=='e':    break   value = 'got: %s' % receive g=gen() print(g.send(None))   print(g.send('aaa')) print(g.send(3)) print(g.send('e')) 

执行流程:

  1. 通过g.send(None)或者next(g)可以启动生成器函数,并执行到第一个yield语句结束的位置。
    此时,执行完了yield语句,但是没有给receive赋值。
    yield value会输出初始值0
    注意:在启动生成器函数时只能send(None),如果试图输入其它的值都会得到错误提示信息。
  2. 通过g.send('aaa'),会传入aaa,并赋值给receive,然后计算出value的值,并回到while头部,执行yield value语句有停止。
    此时yield value会输出"got: aaa",然后挂起。
  3. 通过g.send(3),会重复第2步,最后输出结果为"got: 3"
  4. 当我们g.send('e')时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。最后的执行结果如下:

    0 got: aaa got: 3 Traceback (most recent call last): File "h.py", line 14, in <module>   print(g.send('e')) StopIteration

throw()

用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。

def gen():  while True:    try:    yield 'normal value'    yield 'normal value 2'    print('here')   except ValueError:    print('we got ValueError here')   except TypeError:    break g=gen() print(next(g)) print(g.throw(ValueError)) print(next(g)) print(g.throw(TypeError)) 

输出结果为:

normal value we got ValueError here normal value normal value 2 Traceback (most recent call last):   File "h.py", line 15, in <module>     print(g.throw(TypeError)) StopIteration

解释:

  1. print(next(g)):会输出normal value,并停留在yield 'normal value 2'之前。
  2. 由于执行了g.throw(ValueError),所以会跳过所有后续的try语句,也就是说yield 'normal value 2'不会被执行,然后进入到except语句,打印出we got ValueError here。
    然后再次进入到while语句部分,消耗一个yield,所以会输出normal value。
  3. print(next(g)),会执行yield 'normal value 2'语句,并停留在执行完该语句后的位置。
  4. g.throw(TypeError):会跳出try语句,从而print('here')不会被执行,然后执行break语句,跳出while循环,然后到达程序结尾,所以跑出StopIteration异常。

下面给出一个综合例子,用来把一个多维列表展开,或者说扁平化多维列表)

def flatten(nested):  try:   #如果是字符串,那么手动抛出TypeError。   if isinstance(nested, str):    raise TypeError   for sublist in nested:    #yield flatten(sublist)    for element in flatten(sublist):     #yield element     print('got:', element)  except TypeError:   #print('here')   yield nested L=['aaadf',[1,2,3],2,4,[5,[6,[8,[9]],'ddf'],7]] for num in flatten(L):  print(num) 

如果理解起来有点困难,那么把print语句的注释打开在进行查看就比较明了了。

总结

  1. 按照鸭子模型理论,生成器就是一种迭代器,可以使用for进行迭代。
  2. 第一次执行next(generator)时,会执行完yield语句后程序进行挂起,所有的参数和状态会进行保存。
    再一次执行next(generator)时,会从挂起的状态开始往后执行。
    在遇到程序的结尾或者遇到StopIteration时,循环结束。
  3. 可以通过generator.send(arg)来传入参数,这是协程模型。
  4. 可以通过generator.throw(exception)来传入一个异常。throw语句会消耗掉一个yield。
    可以通过generator.close()来手动关闭生成器。
  5. next()等价于send(None)
正文到此结束
Loading...