转载

ElasticSearch的基本用法与集群搭建

一、简介

ElasticSearch和Solr都是基于Lucene的搜索引擎,不过ElasticSearch天生支持分布式,而Solr是4.0版本后的SolrCloud才是分布式版本,Solr的分布式支持需要ZooKeeper的支持。

这里有一个详细的ElasticSearch和Solr的对比:http://solr-vs-elasticsearch.com/

二、基本用法

Elasticsearch集群可以包含多个索引(indices),每一个索引可以包含多个类型(types),每一个类型包含多个文档(documents),然后每个文档包含多个字段(Fields),这种面向文档型的储存,也算是NoSQL的一种吧。

ES比传统关系型数据库,对一些概念上的理解:

Relational DB -> Databases -> Tables -> Rows -> Columns Elasticsearch -> Indices   -> Types  -> Documents -> Fields

从创建一个Client到添加、删除、查询等基本用法:

1、创建Client

public ElasticSearchService(String ipAddress, int port) {         client = new TransportClient()                 .addTransportAddress(new InetSocketTransportAddress(ipAddress,                         port));     }

这里是一个TransportClient。

ES下两种客户端对比:

TransportClient:轻量级的Client,使用Netty线程池,Socket连接到ES集群。本身不加入到集群,只作为请求的处理。

Node Client:客户端节点本身也是ES节点,加入到集群,和其他ElasticSearch节点一样。频繁的开启和关闭这类Node Clients会在集群中产生“噪音”。

2、创建/删除Index和Type信息

// 创建索引 public void createIndex() {  client.admin().indices().create(new CreateIndexRequest(IndexName))    .actionGet(); } // 清除所有索引 public void deleteIndex() {  IndicesExistsResponse indicesExistsResponse = client.admin().indices()    .exists(new IndicesExistsRequest(new String[] { IndexName }))    .actionGet();  if (indicesExistsResponse.isExists()) {   client.admin().indices().delete(new DeleteIndexRequest(IndexName))     .actionGet();  } } // 删除Index下的某个Type public void deleteType(){  client.prepareDelete().setIndex(IndexName).setType(TypeName).execute().actionGet(); } // 定义索引的映射类型 public void defineIndexTypeMapping() {  try {   XContentBuilder mapBuilder = XContentFactory.jsonBuilder();   mapBuilder.startObject()   .startObject(TypeName)    .startObject("properties")     .startObject(IDFieldName).field("type", "long").field("store", "yes").endObject()     .startObject(SeqNumFieldName).field("type", "long").field("store", "yes").endObject()     .startObject(IMSIFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()     .startObject(IMEIFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()     .startObject(DeviceIDFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()     .startObject(OwnAreaFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()     .startObject(TeleOperFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()     .startObject(TimeFieldName).field("type", "date").field("store", "yes").endObject()    .endObject()   .endObject()   .endObject();   PutMappingRequest putMappingRequest = Requests     .putMappingRequest(IndexName).type(TypeName)     .source(mapBuilder);   client.admin().indices().putMapping(putMappingRequest).actionGet();  } catch (IOException e) {   log.error(e.toString());  } } 

这里自定义了某个Type的索引映射(Mapping),默认ES会自动处理数据类型的映射:针对整型映射为long,浮点数为double,字符串映射为string,时间为date,true或false为boolean。

注意:针对字符串,ES默认会做“analyzed”处理,即先做分词、去掉stop words等处理再index。如果你需要把一个字符串做为整体被索引到,需要把这个字段这样设置:field("index", "not_analyzed")。

详情参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/mapping-intro.html

3、索引数据

// 批量索引数据 public void indexHotSpotDataList(List<Hotspotdata> dataList) {  if (dataList != null) {   int size = dataList.size();   if (size > 0) {    BulkRequestBuilder bulkRequest = client.prepareBulk();    for (int i = 0; i < size; ++i) {     Hotspotdata data = dataList.get(i);     String jsonSource = getIndexDataFromHotspotData(data);     if (jsonSource != null) {      bulkRequest.add(client        .prepareIndex(IndexName, TypeName,          data.getId().toString())        .setRefresh(true).setSource(jsonSource));     }    }    BulkResponse bulkResponse = bulkRequest.execute().actionGet();    if (bulkResponse.hasFailures()) {     Iterator<BulkItemResponse> iter = bulkResponse.iterator();     while (iter.hasNext()) {      BulkItemResponse itemResponse = iter.next();      if (itemResponse.isFailed()) {       log.error(itemResponse.getFailureMessage());      }     }    }   }  } } // 索引数据 public boolean indexHotspotData(Hotspotdata data) {  String jsonSource = getIndexDataFromHotspotData(data);  if (jsonSource != null) {   IndexRequestBuilder requestBuilder = client.prepareIndex(IndexName,     TypeName).setRefresh(true);   requestBuilder.setSource(jsonSource)     .execute().actionGet();   return true;  }  return false; } // 得到索引字符串 public String getIndexDataFromHotspotData(Hotspotdata data) {  String jsonString = null;  if (data != null) {   try {    XContentBuilder jsonBuilder = XContentFactory.jsonBuilder();    jsonBuilder.startObject().field(IDFieldName, data.getId())      .field(SeqNumFieldName, data.getSeqNum())      .field(IMSIFieldName, data.getImsi())      .field(IMEIFieldName, data.getImei())      .field(DeviceIDFieldName, data.getDeviceID())      .field(OwnAreaFieldName, data.getOwnArea())      .field(TeleOperFieldName, data.getTeleOper())      .field(TimeFieldName, data.getCollectTime())      .endObject();    jsonString = jsonBuilder.string();   } catch (IOException e) {    log.equals(e);   }  }  return jsonString; } 

ES支持批量和单个数据索引。

4、查询获取数据

// 获取少量数据100个 private List<Integer> getSearchData(QueryBuilder queryBuilder) {  List<Integer> ids = new ArrayList<>();  SearchResponse searchResponse = client.prepareSearch(IndexName)    .setTypes(TypeName).setQuery(queryBuilder).setSize(100)    .execute().actionGet();  SearchHits searchHits = searchResponse.getHits();  for (SearchHit searchHit : searchHits) {   Integer id = (Integer) searchHit.getSource().get("id");   ids.add(id);  }  return ids; } // 获取大量数据 private List<Integer> getSearchDataByScrolls(QueryBuilder queryBuilder) {  List<Integer> ids = new ArrayList<>();  // 一次获取100000数据  SearchResponse scrollResp = client.prepareSearch(IndexName)    .setSearchType(SearchType.SCAN).setScroll(new TimeValue(60000))    .setQuery(queryBuilder).setSize(100000).execute().actionGet();  while (true) {   for (SearchHit searchHit : scrollResp.getHits().getHits()) {    Integer id = (Integer) searchHit.getSource().get(IDFieldName);    ids.add(id);   }   scrollResp = client.prepareSearchScroll(scrollResp.getScrollId())     .setScroll(new TimeValue(600000)).execute().actionGet();   if (scrollResp.getHits().getHits().length == 0) {    break;   }  }  return ids; } 

这里的QueryBuilder是一个查询条件,ES支持分页查询获取数据,也可以一次性获取大量数据,需要使用Scroll Search。

5、聚合(Aggregation Facet)查询

    // 得到某段时间内设备列表上每个设备的数据分布情况<设备ID,数量> public Map<String, String> getDeviceDistributedInfo(String startTime,  String endTime, List<String> deviceList) {     Map<String, String> resultsMap = new HashMap<>();     QueryBuilder deviceQueryBuilder = getDeviceQueryBuilder(deviceList);     QueryBuilder rangeBuilder = getDateRangeQueryBuilder(startTime, endTime);     QueryBuilder queryBuilder = QueryBuilders.boolQuery()      .must(deviceQueryBuilder).must(rangeBuilder);     TermsBuilder termsBuilder = AggregationBuilders.terms("DeviceIDAgg").size(Integer.MAX_VALUE)      .field(DeviceIDFieldName);     SearchResponse searchResponse = client.prepareSearch(IndexName)      .setQuery(queryBuilder).addAggregation(termsBuilder)      .execute().actionGet();     Terms terms = searchResponse.getAggregations().get("DeviceIDAgg");     if (terms != null) {  for (Terms.Bucket entry : terms.getBuckets()) {      resultsMap.put(entry.getKey(),       String.valueOf(entry.getDocCount()));  }     }     return resultsMap; } 

Aggregation查询可以查询类似统计分析这样的功能:如某个月的数据分布情况,某类数据的最大、最小、总和、平均值等。

详情参考:https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/java-aggs.html

三、集群配置

配置文件elasticsearch.yml

集群名和节点名:

#cluster.name: elasticsearch

#node.name: "Franz Kafka"

是否参与master选举和是否存储数据

#node.master: true

#node.data: true

分片数和副本数

#index.number_of_shards: 5#index.number_of_replicas: 1

master选举最少的节点数,这个一定要设置为整个集群节点个数的一半加1,即N/2+1

#discovery.zen.minimum_master_nodes: 1

discovery ping的超时时间,拥塞网络,网络状态不佳的情况下设置高一点

#discovery.zen.ping.timeout: 3s

注意,分布式系统整个集群节点个数N要为奇数个!!

四、Elasticsearch插件

1、elasticsearch-head是一个elasticsearch的集群管理工具:./elasticsearch-1.7.1/bin/plugin -install mobz/elasticsearch-head

2、elasticsearch-sql:使用SQL语法查询elasticsearch:./bin/plugin -u https://github.com/NLPchina/elasticsearch-sql/releases/download/1.3.5/elasticsearch-sql-1.3.5.zip --install sql

github地址: https://github.com/NLPchina/elasticsearch-sql

3、elasticsearch-bigdesk是elasticsearch的一个集群监控工具,可以通过它来查看ES集群的各种状态。

安装:./bin/plugin -install lukas-vlcek/bigdesk

访问: http://192.103.101.203:9200/_plugin/bigdesk/ ,

4、elasticsearch-servicewrapper插件是ElasticSearch的服务化插件,

在https://github.com/elasticsearch/elasticsearch-servicewrapper下载该插件后,解压缩,将service目录拷贝到elasticsearch目录的bin目录下。

而后,可以通过执行以下语句安装、启动、停止ElasticSearch:

sh elasticsearch install

sh elasticsearch start

sh elasticsearch stop

参考:

https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.html

http://stackoverflow.com/questions/10213009/solr-vs-elasticsearch

http://www.cnblogs.com/wgp13x/p/4859680.html

正文到此结束
Loading...