在准备之前说一下本次搭建的各节点角色,进程。
nameNode 进程:NameNode
dataNode 进程:DataNode
resourceManager :ResourceManager
nodeManeger : NodeManager
zkfc:DFSZKFailoverController
journalnode: JournalNode
zookeeper: QuorumPeerMain
我的IP:
192.168.79.101 hadoop1
192.168.79.102 hadoop2
192.168.79.103 hadoop3
192.168.79.104 hadoop4
1. 修改Linux主机名:
命令:vim /etc/sysconfig/network
HOSTNAME 主机名
2. 修改IP为静态IP:
(第一种方式)
进入图形界面 -> 点击右上角的俩个小电脑图标 -> 右键 -> edit connections -> ipv4 -> manual -> 点击add按钮 -> 添加IP,NETMASK, GATEWAY,如果可以的话建议使用第一种方式。
(第二种通过修改文件) vim /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE="eth0"
BOOTPROTO="static" ###
HWADDR="00:0C:29:3C:BF:E7"
IPV6INIT="yes"
NM_CONTROLLED="yes"
ONBOOT="yes"
TYPE="Ethernet"
UUID="ce22eeca-ecde-4536-8cc2-ef0dc36d4a8c"
IPADDR="192.168.1.119" ###
NETMASK="255.255.255.0" ###
GATEWAY="192.168.1.1" ###
3. 配置主机名和IP的映射关系,每个机器都是这样一个文件。
命令:vim /etc/hosts
4. 关闭防火墙
service iptables stop
#查看防火墙开机启动状态
chkconfig iptables --list
#关闭防火墙开机启动
chkconfig iptables off
5. 配置各个节点之间的免登陆。
生成ssh免登陆密钥 : ssh-keygen -t rsa为了简单,一直回车即可。各个节点都执行完这个命令后,会生成两个文件id_rsa(私钥)、id_rsa.pub(公钥)
我这里以hadoop1 到2,3,4为例。其余各节点操作一样。
将公钥拷贝到要免登陆的机器上
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
或
ssh-copy-id -i hadoop1
将公钥拷贝到其他节点,包括自己(期间会提示输入密码):
ssh-copy-id -i hadoop1
ssh-copy-id -i hadoop2
ssh-copy-id -i hadoop3
ssh-copy-id -i hadoop4
其他节点同样操作。最后每个机器的 /root/.ssh 中 authorized_keys文件会有四个公钥。
在hadoop1上执行 ssh hadoop2
1. 上传jdk,hadoop,zookeeper
2. 添加执行权限
3. 解压。我把他们解压到 /usr/local/tools 下
4. 各个节点配置环境变量:
命令: vim /etc/profile
针对我自己的路径,配置如下:
export JAVA_HOME=/usr/local/tools/jdk1.7.0_75
export HADOOP_HOME=/usr/local/tools/hadoop-2.2.0
export ZK_HOME=/usr/local/tools/zookeeper-3.4.5
export CLASSPATH=.:%JAVA_HOME%/lib/dt.jar:%JAVA_HOME%/lib/tools.jar
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$ZK_HOME/bin
然后执行 source /etc/profile 使其生效。验证,例如执行 java -version
基本要配置4个配置文件,core-site.xml,hdfs-site.xml,yarn-site.xml,mapred-site.xml
1. 配置core-site.xml:
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://ns1</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/usr/local/hadoop/tmp</value> </property> <property> <name>ha.zookeeper.quorum</name> <value>hadoop1:2181,hadoop2:2181,hadoop3:2181</value> </property> <property> <name>io.file.buffer.size</name> <value>131072</value> </property> </configuration>
fs.defaultFS:指定hdfs的nameservice为ns1
hadoop.tmp.dir:指定hadoop临时目录
ha.zookeeper.quorum:指定zookeeper地址
2. 配置hdfs-site.xml
<configuration> <property> <name>dfs.nameservices</name> <value>ns1</value> </property> <property> <name>dfs.ha.namenodes.ns1</name> <value>nn1,nn2</value> </property> <property> <name>dfs.namenode.rpc-address.ns1.nn1</name> <value>hadoop1:9000</value> </property> <property> <name>dfs.namenode.http-address.ns1.nn1</name> <value>hadoop1:50070</value> </property> <property> <name>dfs.namenode.rpc-address.ns1.nn2</name> <value>hadoop2:9000</value> </property> <property> <name>dfs.namenode.http-address.ns1.nn2</name> <value>hadoop2:50070</value> </property> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://hadoop1:8485;hadoop2:8485;hadoop3:8485/ns1</value> </property> <property> <name>dfs.ha.automatic-failover.enabled.ns1</name> <value>true</value> </property> <property> <name>dfs.client.failover.proxy.provider.ns1</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <property> <name>dfs.journalnode.edits.dir</name> <value>/usr/local/journal</value> </property> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/root/.ssh/id_rsa</value> </property> <property> <name>dfs.data.dir</name> <value>/usr/local/data</value> </property> <property> <name>dfs.datanode.socket.write.timeout</name> <value>0</value> </property> <property> <name>dfs.replication</name> <value>3</value> </property> </configuration>
dfs.nameservices: 指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致
dfs.ha.namenodes.ns1:ns1下面有两个NameNode,分别是nn1,nn2
dfs.namenode.rpc-address.ns1.nn1: nn1的RPC通信地址
dfs.namenode.http-address.ns1.nn1: nn1的http通信地址
dfs.namenode.shared.edits.dir:指定NameNode的元数据在JournalNode上的存放位置
dfs.journalnode.edits.dir : 指定JournalNode在本地磁盘存放数据的位置
dfs.ha.automatic-failover.enabled: true是开启NameNode失败自动切换
dfs.client.failover.proxy.provider.ns1:配置失败自动切换实现方式
dfs.ha.fencing.ssh.private-key-files:使用sshfence隔离机制时需要ssh免登陆
3. 配置yarn-site.xml
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> <property> <name>yarn.nodemanager.local-dirs</name> <value>/opt/yarn/hadoop/nmdir</value> </property> <property> <name>yarn.nodemanager.log-dirs</name> <value>/opt/yarn/logs</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <property> <description>Where to aggregate logs</description> <name>yarn.nodemanager.remote-app-log-dir</name> <value>hdfs://ns1/var/log/hadoop-yarn/apps</value> </property> <!-- Resource Manager Configs --> <property> <name>yarn.resourcemanager.connect.retry-interval.ms</name> <value>2000</value> </property> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.ha.automatic-failover.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.ha.automatic-failover.embedded</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.cluster-id</name> <value>ns1</value> </property> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <property> <name>yarn.resourcemanager.ha.id</name> <value>rm1</value> </property> <property> <name>yarn.resourcemanager.scheduler.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value> </property> <property> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.zk.state-store.address</name> <value>hadoop1:2181,hadoop2:2181,hadoop3:2181</value> </property> <property> <name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name> <value>5000</value> </property> <!-- RM1 configs --> <property> <name>yarn.resourcemanager.address.rm1</name> <value>hadoop1:23140</value> </property> <property> <name>yarn.resourcemanager.scheduler.address.rm1</name> <value>hadoop1:23130</value> </property> <property> <name>yarn.resourcemanager.webapp.https.address.rm1</name> <value>hadoop1:23189</value> </property> <property> <name>yarn.resourcemanager.webapp.address.rm1</name> <value>hadoop1:23188</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm1</name> <value>hadoop1:23125</value> </property> <property> <name>yarn.resourcemanager.admin.address.rm1</name> <value>hadoop1:23141</value> </property> <!-- RM2 configs --> <property> <name>yarn.resourcemanager.address.rm2</name> <value>hadoop2:23140</value> </property> <property> <name>yarn.resourcemanager.scheduler.address.rm2</name> <value>hadoop2:23130</value> </property> <property> <name>yarn.resourcemanager.webapp.https.address.rm2</name> <value>hadoop2:23189</value> </property> <property> <name>yarn.resourcemanager.webapp.address.rm2</name> <value>hadoop2:23188</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm2</name> <value>hadoop2:23125</value> </property> <property> <name>yarn.resourcemanager.admin.address.rm2</name> <value>hadoop2:23141</value> </property> <!-- Node Manager Configs --> <property> <description>Address where the localizer IPC is.</description> <name>yarn.nodemanager.localizer.address</name> <value>0.0.0.0:23344</value> </property> <property> <description>NM Webapp address.</description> <name>yarn.nodemanager.webapp.address</name> <value>0.0.0.0:23999</value> </property> <property> <name>yarn.nodemanager.local-dirs</name> <value>/opt/yarn/nodemanager/yarn/local</value> </property> <property> <name>yarn.nodemanager.log-dirs</name> <value>/opt/yarn/nodemanager/yarn/log</value> </property> <property> <name>mapreduce.shuffle.port</name> <value>23080</value> </property> <property> <name>yarn.resourcemanager.zk-address</name> <value>hadoop1:2181,hadoop2:2181,hadoop3:2181</value> </property> </configuration>
4. 配置mapred-site.xml
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <!-- configure historyserver --> <property> <name>mapreduce.jobhistory.address</name> <value>hadoop4:10020</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>hadoop4:19888</value> </property> <property> <name>mapred.job.reuse.jvm.num.tasks</name> <value>-1</value> </property> <property> <name>mapreduce.reduce.shuffle.parallelcopies</name> <value>20</value> </property> </configuration>
5. 配置slaves文件
和上述文件在同一个目录中的slaves文件,写入:
hadoop1 hadoop2 hadoop3 hadoop4
1. 启动zookeeper集群(hadoop1,hadoop2,hadoop3上执行)
执行 : zkServer.sh start
三个节点都启动后查看状态,一个 leader 两个follower
此时执行jps查看进程,启动了QuorumPeerMain
2. 启动journalnode (hadoop1,hadoop2,hadoop3上执行)
执行: hadoop-daemon.sh start journalnode
此时查看进程,多了JournalNode进程
3. 格式化HDFS(hadoop1上执行)
执行: hdfs namenode -format
4. 格式化ZK
执行:hdfs zkfc -formatZK
5. 启动hadoop1的namenode,zkfc
执行: hadoop-daemon.sh start namenode , hadoop-daemon.sh start zkfc
此时查看进程,zkfc,namenode都启动了。
6. hadoop2上数据同步格式化的hadoop1上的hdfs
执行: hdfs namenode -bootstrapStandby
然后同hadoop1一样启动namenode和zkfc。
7. 启动HDFS:
执行:start-dfs.sh
8. 启动YARN
执行:start-yarn.sh
9. hadoop4上启动 JobHistoryServer
执行: mr-jobhistory-daemon.sh start historyserver
现在全部启动好了。然后看看各节点功能和进程是否对应启动好。
至此。都已启动好。可通过浏览器访问:
1. http://192.168.79.101:50070
NameNode 'hadoop1:9000' (standby)
2. http://192.168.79.102:50070
NameNode 'hadoop2:9000' (active)
3. http://192.168.79.104:19888/
4. http://192.168.79.102:8088/
1. 验证hdfs HA
首先向hdfs上传一个文件: hadoop fs -put /usr/local/soft/jdk-7u75-linux-x64.gz /soft
然后查看: hadoop fs -ls /
然后再kill掉active的NameNode。然后浏览器访问 看到 hadoop1变成active的了。
在执行命令:hadoop fs -ls /
文件还在。然后再启动刚才停掉的namenode 。然后访问,变成standby的了。
2. 验证YARN
运行一下hadoop提供的demo中的WordCount程序:
自己写了个word.txt 写入几个单词测试 :
hello jerry
hello tom
hello world
上传word.txt 到hdfs: hadoop fs -put /home/word.txt /input
然后运行: hadoop jar /usr/local/tools/hadoop-2.2.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /input /out
成功后查看: 按照自己的目录,我的命令是写入到out 目录 。
OK,至此就完成hadoop学习的第一课了。