转载

不相交集的求并算法(按集合大小求并+按高度求并)

【0】README

0.1)本文总结于 数据结构与算法分析, 但源代码均为原创,旨在实现 不相交集ADT的两个操作:合并集合union+查找集合find;

0.2) 不相交集ADT 的 Introduction , 参见 http://blog.csdn.net/PacosonSWJTU/article/details/49716905

【1】灵巧求并算法——按集合大小求并

1.1)大小求并法定义:上面的Union执行是相当任意的, 通过使第二棵树 成为第一棵树的子树而完成合并;对其的改进是借助任意的方法打破现有关系, 使得总让较小的树成为较大树的子树,我们把这种方法叫做 大小求并法

1.2)可以看到,如果Union 操作都是按照大小求并的话,那么任何节点的深度均不会超过 logN;

1.3) 首先注意节点的深度为0, 然后它的深度随着一次 Union 的结果而增加的时候,该节点则被置于至少是 它以前所在树两倍大的一棵树上;因此,它的深度最多可以增加 logN次;
  • 1.3.2)Find 操作 的运行时间为 O(logN), 而连续M次操作则花费 O(MlogN);

  • 1.3.3)下图指出在16次Union操作后可能得到这种最坏的树;而且如果所有的Union都对相等大小的树进行, 那么这样的树是会得到的;

    不相交集的求并算法(按集合大小求并+按高度求并)

1.4)为了实现这种方法, 我们需要记住每个树的大小。由于我们实际上只使用一个数组,因此可以让每个根的数组元素包含它 的树的大小的负值;

1.5)已经证明: 若使用按大小求并则连续 M次运算需要 O(M)平均时间, 这是因为 当随机的Union执行时, 整个算法一般只有一些很小的集合(通常是一个元素)与 大 集合 合并;

1.6)souce code + printing

  • 1.6.1)download source code :
    https://github.com/pacosonTang/dataStructure-algorithmAnalysis/blob/master/chapter8/p203_unionBySize.c
  • Source Code Statements:

    • S1)显然,本源代码只对元素的size进行了加,没有减;因为我想的话, 元素只能合并一次,也即是元素C起初合并到了集合A,就不能再次合并到集合B, 元素C就一直属于集合A的子集了;

    • S2)当然,这个代码只是 大致上实现了按大小求并的思想,如果元素C还可以再次合并到其他集合的话,这就涉及到集合根元素的size的加减问题了;需要的话,添加之即可;

  • 1.6.2)souce code at a glance

#include <stdio.h> #include <malloc.h> #define ElementType int #define Error(str) printf("/n error: %s /n",str)  struct UnionSet; typedef struct UnionSet* UnionSet; // we adopt the child-sibling expr struct UnionSet {  int parent;  int size;  ElementType value; }; UnionSet makeEmpty();  UnionSet* initUnionSet(int size, ElementType* data); void printSet(UnionSet* set, int size); void printArray(ElementType data[], int size); int find(ElementType index, UnionSet* set); // initialize the union set  UnionSet* initUnionSet(int size, ElementType* data) {  UnionSet* set;   int i;  set = (UnionSet*)malloc(size * sizeof(UnionSet));  if(!set)  {   Error("out of space, from func initUnionSet");   return NULL;  }   for(i=0; i<size; i++)  {   set[i] = makeEmpty();   if(!set[i])    return NULL;   set[i]->value = data[i];  }  return set; } // allocate the memory for the single UnionSet and evaluate the parent and size -1 UnionSet makeEmpty() {  UnionSet temp;  temp = (UnionSet)malloc(sizeof(struct UnionSet));  if(!temp)  {   Error("out of space, from func makeEmpty!");    return NULL;  }  temp->parent = -1;  temp->size = 1;  return temp; } // merge set1 and set2 by size void setUnion(UnionSet* set, int index1, int index2) {  //judge whether the index1 or index2 equals to -1 ,also -1 represents the root  if(index1 != -1)   index1 = find(index1, set);  if(index2 != -1)   index2 = find(index2, set);  if(set[index1]->size > set[index2]->size)  {   set[index2]->parent = index1;   set[index1]->size += set[index2]->size;  }  else  {   set[index1]->parent = index2;   set[index2]->size += set[index1]->size;  } }  //find the root of one set whose value equals to given value int find(ElementType index, UnionSet* set)  {  UnionSet temp;   while(1)  {   temp = set[index];   if(temp->parent == -1)    break;   index = temp->parent;  }  return index;   }  int main() {  int size;  UnionSet* unionSet;  ElementType data[] = {110, 245, 895, 658, 321, 852, 147, 458, 469, 159, 347, 28};  size = 12;  printf("/n/t====== test for union set by size ======/n");  //printf("/n/t=== the initial array is as follows ===/n");  //printArray(data, size);   printf("/n/t=== the init union set are as follows ===/n");  unionSet = initUnionSet(size, data); // initialize the union set over  printSet(unionSet, size);  printf("/n/t=== after union(1,5) + union(2,5) + union(3,4) + union(4,5) ===/n");  setUnion(unionSet, 1, 5);  setUnion(unionSet, 2, 5);  setUnion(unionSet, 3, 4);  setUnion(unionSet, 4, 5);  printSet(unionSet, size);  printf("/n/t=== after union(9,8) + union(7,6) + union(3,6) ===/n");  setUnion(unionSet, 9, 8);  setUnion(unionSet, 7, 6);  setUnion(unionSet, 3, 6);   printSet(unionSet, size);  return 0; } void printArray(ElementType data[], int size) {  int i;  for(i = 0; i < size; i++)     printf("/n/t data[%d] = %d", i, data[i]);        printf("/n/n"); }  void printSet(UnionSet* set, int size) {  int i;  UnionSet temp;  for(i = 0; i < size; i++)  {     temp = set[i];   printf("/n/t parent[%d] = %d", i, temp->parent);      }  printf("/n"); }  
  • 1.6.3)printing result

    不相交集的求并算法(按集合大小求并+按高度求并)

【2】灵巧求并算法——按集合高度求并

2.1)按高度求并定义:另外一种方法是按照高度求并(按照高度求并是按大小求并的简单修改) (推荐)

2.2)它同样保证所有的树的深入最多是 O(logN)。我们使得 浅的树 成为深 的树的子树,这是一种平缓算法, 因为只有当两颗相等深度的树求并时树的高度才会增加(此时树的高度增加1)。

2.3)source code + printing result
  • 2.3.1)download source code :

    https://github.com/pacosonTang/dataStructure-algorithmAnalysis/blob/master/chapter8/p205_unionByHeight.c
  • 2.3.2)source code at a glance:

#include <stdio.h> #include <malloc.h> #define ElementType int #define Error(str) printf("/n error: %s /n",str)  struct UnionSet; typedef struct UnionSet* UnionSet; // we adopt the depth-sibling expr struct UnionSet {  int parent;  int height;  ElementType value; }; UnionSet makeEmpty(); UnionSet* initUnionSet(int depth, ElementType* data); void printSet(UnionSet* set, int depth); void printArray(ElementType data[], int depth); int find(ElementType index, UnionSet* set); // initialize the union set  UnionSet* initUnionSet(int size, ElementType* data) {  UnionSet* set;   int i;  set = (UnionSet*)malloc(size * sizeof(UnionSet));  if(!set)  {   Error("out of space, from func initUnionSet");   return NULL;  }   for(i=0; i<size; i++)  {   set[i] = makeEmpty();   if(!set[i])    return NULL;   set[i]->value = data[i];  }  return set; } // allocate the memory for the single UnionSet and evaluate the parent and depth -1 UnionSet makeEmpty() {  UnionSet temp;  temp = (UnionSet)malloc(sizeof(struct UnionSet));  if(!temp)  {   Error("out of space, from func makeEmpty!");    return NULL;  }  temp->parent = -1;  temp->height = 0;  return temp; } // merge set1 and set2 by depth void setUnion(UnionSet* set, int index1, int index2) {  //judge whether the index1 or index2 equals to -1 ,also -1 represents the root  if(index1 != -1)   index1 = find(index1, set);  if(index2 != -1)   index2 = find(index2, set);  if(set[index1]->height > set[index2]->height)    set[index2]->parent = index1;     else if(set[index1]->height < set[index2]->height)    set[index1]->parent = index2;    else  {   set[index1]->parent = index2;   set[index2]->height++; // only if the height of both of subtrees is equal, the height increases one  } }  //find the root of one set whose value equals to given value int find(ElementType index, UnionSet* set)  {  UnionSet temp;   while(1)  {   temp = set[index];   if(temp->parent == -1)    break;   index = temp->parent;  }  return index;   }  int main() {  int size;  UnionSet* unionSet;  ElementType data[] = {110, 245, 895, 658, 321, 852, 147, 458, 469, 159, 347, 28};  size = 12;  printf("/n/t====== test for union set by depth ======/n");  //printf("/n/t=== the initial array is as follows ===/n");  //printArray(data, depth);   printf("/n/t=== the init union set are as follows ===/n");  unionSet = initUnionSet(size, data); // initialize the union set over  printSet(unionSet, size);  printf("/n/t=== after union(0, 1) + union(2, 3) + union(4, 5) + union(6, 7) + union(8, 9) + union(10 ,11) ===/n");  setUnion(unionSet, 0, 1);  setUnion(unionSet, 2, 3);  setUnion(unionSet, 4, 5);  setUnion(unionSet, 6, 7);  setUnion(unionSet, 8, 9);   setUnion(unionSet, 10, 11);   printSet(unionSet, size);  printf("/n/t=== after union(1, 3) + union(5, 7) + union(9, 11) ===/n");  setUnion(unionSet, 1, 3);  setUnion(unionSet, 5, 7);  setUnion(unionSet, 9, 11);  printSet(unionSet, size);    printf("/n/t=== after union(3, 7) + union(7, 11) ===/n");  setUnion(unionSet, 3, 7);  setUnion(unionSet, 7, 11);   printSet(unionSet, size);   return 0; } void printArray(ElementType data[], int size) {  int i;  for(i = 0; i < size; i++)     printf("/n/t data[%d] = %d", i, data[i]);        printf("/n/n"); }  void printSet(UnionSet* set, int size) {  int i;  UnionSet temp;  for(i = 0; i < size; i++)  {     temp = set[i];   printf("/n/t parent[%d] = %d", i, temp->parent);      }  printf("/n"); }  
  • 2.3.3)printing results:

    不相交集的求并算法(按集合大小求并+按高度求并)
正文到此结束
Loading...