为什么使用 TensorFlow?
TensorFlow 提供构建各种不同类型机器学习应用的核心
会继续在分布式方向和常规管道机器中进行创新
为什么使用 Scikit Flow?
可以平滑的从单向机器学习 Scikit Learn 过渡到更开放的,可以构建不同类型的 ML 模型。用户可以通过 fit/predict 和切换到 TensorFlow APIs。
提供一系列的参考模型,方便与现有的代码集成。
import skflow from sklearn import datasets, metrics iris = datasets.load_iris() classifier = skflow.TensorFlowLinearClassifier(n_classes=3) classifier.fit(iris.data, iris.target) score = metrics.accuracy_score(classifier.predict(iris.data), iris.target) print("Accuracy: %f" % score)
import skflow from sklearn import datasets, metrics, preprocessing boston = datasets.load_boston() X = preprocessing.StandardScaler().fit_transform(boston.data) regressor = skflow.TensorFlowLinearRegressor() regressor.fit(X, boston.target) score = metrics.mean_squared_error(regressor.predict(X), boston.target) print ("MSE: %f" % score)
import skflow from sklearn import datasets, metrics iris = datasets.load_iris() classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3) classifier.fit(iris.data, iris.target) score = metrics.accuracy_score(classifier.predict(iris.data), iris.target) print("Accuracy: %f" % score)
import skflow from sklearn import datasets, metrics iris = datasets.load_iris() def my_model(X, y): """This is DNN with 10, 20, 10 hidden layers, and dropout of 0.5 probability.""" layers = skflow.ops.dnn(X, [10, 20, 10], keep_prob=0.5) return skflow.models.logistic_regression(layers, y) classifier = skflow.TensorFlowEstimator(model_fn=my_model, n_classes=3) classifier.fit(iris.data, iris.target) score = metrics.accuracy_score(classifier.predict(iris.data), iris.target) print("Accuracy: %f" % score)
更好的处理类别变量
文本分类
图像 (CNNs)
更多 & 更深