转载

Python单元测试和Mock测试

本博客采用创作共用版权协议, 要求署名、非商业用途和保持一致. 转载本博客文章必须也遵循 署名-非商业用途-保持一致 的创作共用协议.

单元测试

  • 测试可以保证你的代码在一系列给定条件下正常工作
  • 测试允许人们确保对代码的改动不会破坏现有的功能
  • 测试迫使人们在不寻常条件的情况下思考代码,这可能会揭示出逻辑错误
  • 良好的测试要求模块化,解耦代码,这是一个良好的系统设计的标志

范例

#!/usr/bin/env python # -*- coding: utf-8 -*-  importos, sys importtime, datetime importunittest fromunittestimportTestCase  classTestSequenece(TestCase):  defsetUp(self):  self.lst = range(10) print"setUp starting ..."  deftest_eq(self): print"test_eq starting..."  self.assertEqual(self.lst, range(10))  deftest_in(self): print"test_in starting..."  self.assertIn(1, self.lst)  self.assertNotIn(10, self.lst)  deftest_instance(self): print"test_instance starting..."  self.assertIsInstance(self.lst, list)  deftearDown(self): print"tearDown starting..."  if__name__ =='__main__':  unittest.main() 

然后我们看一下执行结果再分析:

setUp starting ... test_eq starting... tearDown starting... .setUp starting ... test_in starting... tearDown starting... .setUp starting ... test_instance starting... tearDown starting... . ---------------------------------------------------------------------- Ran 3testsin0.000s  OK 

共运行三个测试, 每次测试成功通过都会输出一个.号

  • TestCase 直译就是测试用例, 一个测试用例可以包含多个测试
  • test_xxxx 就是测试项, 根据实际的功能代码逻辑来编写对应的测试项, 运行时会自动查找所有以test开发的成员函数
  • assertXXXX 断言语句, 用来判断测试结果是否符合测试预期结果.
  • setUp 是执行 每个 测试项前的准备工作, 比如:可以做一些初始化工作
  • tearDown 是执行在 每个 测试项后的收尾工作,销毁测试过程中产生的垃圾, 恢复现场等

Mock测试

Mock测试是什么鬼? 我们常常遇到这样一种场景, 我们测试一些函数, 而这些函数内部调用另外带有 副作用 的操作, 这可能导致我们在测试过程中对数据造成未知的副作用, 而这并不是我们希望在测试中看到的.

Mock测试可以替换到指定的Python对象或者方法, 并自定义指定对象或者方法的返回值, 从来模拟对象或者方法, 消除 副作用 .

Mock在Python3.3时加入到标准库中, 2.X版本可以通过pip安装

$ pip install mock 

首先任意写一个函数

# -*- coding: utf-8 -*- #!/usr/bin/env python  importos, sys, time  deffoo():  lst = [1]  lst = give_me_five(lst) returnlst  defgive_me_five(lst): returnlst *5 

我们希望通过单元测试来测试这个函数的逻辑正确性( 请注意, 这只是一个演习! ).

# -*- coding: utf-8 -*- #!/usr/bin/env python  importos, sys, time # sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) importunittest fromunittestimportTestCase importmock importmodule   classFoo(object): pass  classTestMock(TestCase): # 1 deftest_method(self):  obj = Foo()  obj.method = mock.MagicMock(return_value=3) printobj.method  self.assertEqual(obj.method(4),3) # 2 @mock.patch('module.foo') deftest_decorator(self, foo): # res = module.foo()  foo.return_value = [1,2,3]  self.assertEqual(foo(), [1,2,3]) # 3 deftest_with(self): withmock.patch('module.give_me_five')asgive_me_five:  give_me_five.return_value = "I'm Mock"  self.assertEqual(module.foo(), "I'm Mock") # 4 deftest_module(self):  module.give_me_five = mock.Mock(return_value=[1] *5)  module.give_me_five([1])# 此时已经变成了一个Mock对象, 并尝试调用  module.give_me_five.assert_called_with([1])# 对mock的参数进行断言  self.assertEqual(module.foo(), [1] *5)  if__name__ =='__main__':  unittest.main() 
  • 我们首先集成TestCase创建了一个单元测试
  • # 1 位置, 我们通过mock提供的函数给obj的method方法设置返回值(可以看到类中并不包含method方法). 最后通过断言来判断返回值等于我们通过 MagicMock 设置的返回值
  • # 2 位置, 我们通过mock提供的装饰器, patch()可以作为函数做装饰, 类装饰器, 上下文管理器 将module中的foo函数给mock掉, 并且并mock的函数生成的Mock对象作为类成员函数参数传入 , 指定了foo函数的返回值, 并通过了断言测试
  • # 3 位置, 将patch()作为一个上下文管理, 关于上下文管理器可以看我另一篇文章Python奇技淫巧, 用法和作为装饰器基本类似
  • # 4 位置, 我们调用 module.foo 函数, 而我们并不关系foo()调用了那些函数, 我只关心在成功调用 module.give_me_five 后, foo函数的逻辑正确性. 所以此次我们通过Mock函数给 module.give_me_five 指定我们希望的返回值. 这样就能独立的测试 module.foo 的逻辑

mock的主要思想: 通过mock对象对某些函数进行替换, 对在测试上下文中, 这些被mock的函数被重定向到指定的mock对象

mock还有一些更高级的应用

  • MagicMockMock 的子类, 并且包含一些如 __str__ 一样的黑魔法函数, 使用 MagicMock 甚至可以mock掉黑魔法函数
  • 通过patch.object可以mock掉类中指定的成员函数
  • 通过patch.dict可以将对象mock为字典
  • 通过patch中的 startstop 方法可以控制mock的生效范围, 更加灵活的运行mock测试

参考链接

  • Python unittest官方文档
  • Python中的单元测试
  • Python 使用断言的最佳时机
  • Python Mock的入门
  • The Mock Class
正文到此结束
Loading...