转载

【Spark Core】从作业提交到任务调度完整生命周期浅析

引言

这一小节我们将就之前写的几篇博文,从提交Job,到Stage划分,到任务分发,再到任务的执行,这一完整过程做一系统的回顾。在这一过程中理清思路,明确几篇文章中涉及到的调度关系和逻辑关系。

Spark作业提交到执行过程

【Spark Core】从作业提交到任务调度完整生命周期浅析

上面这个图摘自张包峰的csdn博客,这个图很清晰的描述了作业提交执行的整个过程,略去了细节原理,给人一种清晰直观的流程概况。

通过该图结合一下我之前的博文来描述一下文章的内容和相互关系:

DAGScheduler源码浅析介绍了SparkContext通过DAGScheduler的runJob提交作业,其中通过DAGScheduler的事件队列来处理JobSubmitted事件来处理提交的Job。

DAGScheduler源码浅析2 对DAGScheduler中涉及的两个重要组件进行的补充介绍。

Stage生成和Stage源码浅析 介绍了将Job划分为Stage的过程,Spark根据RDD的依赖关系划分Stage,最终将其封装成taskset进行提交。

TaskScheduler源码与任务提交原理浅析1 介绍了TaskScheduler和SchedulerBackend的关系。

TaskScheduler源码与任务提交原理浅析2 介绍了Driver侧的SchedulerBackend是如何进行资源分配和任务调度的,最终派发给Executor去执行。

任务执行机制和Task源码浅析2 介绍了Task在Executor中的执行过程。

Driver的任务提交过程

【Spark Core】从作业提交到任务调度完整生命周期浅析

1、Driver程序的代码运行到action操作,触发了SparkContext的runJob方法。

2、SparkContext调用DAGScheduler的runJob函数。

3、DAGScheduler把Job划分stage,然后把stage转化为相应的Tasks,把Tasks交给TaskScheduler。

4、通过TaskScheduler把Tasks添加到任务队列当中,交给SchedulerBackend进行资源分配和任务调度。

5、调度器给Task分配执行Executor,ExecutorBackend负责执行Task。

参考资料

Spark源码系列(四)图解作业生命周期

Spark的任务调度

转载请注明作者Jason Ding及其出处

GitCafe博客主页(http://jasonding1354.gitcafe.io/)

Github博客主页(http://jasonding1354.github.io/)

CSDN博客(http://blog.csdn.net/jasonding1354)

简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

Google搜索jasonding1354进入我的博客主页

正文到此结束
Loading...