可能通过「高可用架构」听说过在微博的系统中,单张 MySQL 在线业务表 60 亿条数据的场景。很多关注互联网架构的工程师也非常关注如何如何设计类似系统。下面是一道微博新兵训练营的分布式存储课堂练习,要设计合格才能上岗。
考虑到网上有很多架构师也在讨论,补充题目一些说明如下。
由于上面题目的应用场景,用户一般情况下,主要查看用户查看自己收到的最新的微博,以及某个特定用户 profile 的所有微博。
不需要考虑的点
High availability 高可用,以及 Reliability 可靠性 – 复制
在当前场景下,主要通过 MySQL replication 来解决可用性、以及分担读的请求。
range based:根据用户 uid 来分布,相邻 uid 的数据保存在一起。hash based:根据某个 hash 函数,将一个用户 uid 的数据保存在指定的分片。
Re-Sharding 拆分设计
当数据持续增长,原先存储的数据(或者访问量)超过当前节点的容量上限,则需要对节点进行进一步拆分。
db buffer > hot data
关于分页:
为什么超长列表数据的翻页技术实现复杂
为什么超长列表数据的翻页技术实现复杂(二)案例一:使用 user id range 作为分片
案例二:使用user id hash作为分片
方案三 (via 张亮)
历史数据:
1. 每半年根据日期分库,如:2015.01-2015.06为一个库。每天增加1亿数据,半年180亿,约为0.72T数据,可以保留在1T的磁盘中。
2. 根据 uid 取模分库(表),便于查询和分散数据。
当前 n 日数据:
1. 暂定n为10,存储10亿数据。
2. 根据uid + 权重的hash算法分库。权重可以根据每个uid的微博id数量,粉丝数等指标离线计算。
hash算法需保证:
1. 同一uid需落在一个库。
2. 权重接近的用户尽量均匀的落在不同库。
3. 为了应对突然发生的事件导致访问量激增,需要考虑2级甚至3级分片,而不宜直接做re-sharding导致数据迁移。多级分片可考虑读取一个标记,放在zk中。根据标记确定分片的hash算法加入小时等维度。
查询索引:
1. 增加发帖索引字段,记录每个用户的每个帖子的索引。
2. 增加发帖总数统计表,以用户为维度,每个用户发一次贴则发帖总数++。
3. 增加二级索引表,记录每个用户,每次分片库的发帖索引。如:uid 1的用户,在2015年第一帖是该用户发帖的总数的第10贴,2015年最后一贴是该用户发帖总数的第50贴。
4. 分页查询使用二级索引表,先查到该查哪个真实库(可能是多个),再到真实库中获取数据。
总结:
1. 通过灵活的运用时间维度分片,免去因uid分片数量不足导致的大规模迁移,使用外部flag灵活的控制分片策略。而且用时间维度分片更易做到冷热分离。
分片逻辑可以灵活到,zk中记录时间段,某个时间段内,按月分,某个时间段,按年分,之类。
2. 通过离线计算权重的方式均匀分散数据访问。权重周期性调整,对于调整权重的用户,需要重点考虑当前n日数据的数据迁移方案。但由于调整权重的用户属于少量,所以迁移应该数据变动较小。历史数据不需权重概念,无需数据迁移。
3. 查询使用二级索引。使用修改btree结构去掉二级索引能有效减少数据量,但实现难度较大,可以在之后的局部优化中实现,对总体数据库结构影响不大。
4. 将前n日数据和当天数据整合在一起,之前对微博的场景理解不深,以为有首屏显示这样的概念。