转载

Dlib 18.13 发布,跨平台 C++ 通用库

阿里百川梦想创业大赛,500万创投寻找最赞的APP

Dlib 18.13 发布,此版本更新内容如下:

新特性    - Added the correlation_tracker object    - Added the option to force the last weight to 1 to structural_assignment_trainer.    - Added max_point_interpolated()    - Added the drectangle object    - New Python Tools:       - Patrick Snape contributed a Python binding for the face landmarking tool and          the general purpose shape prediction/training tools.       - Vinh Khuc contributed a Python binding for find_candidate_object_locations(),         dlib's implementation of the selective search object location proposal method.  非向后兼容改进  Bug 修复    - Fixed a bug in extract_image_chips() and get_mapping_to_chip() that caused      incorrect outputs when the requested chip stretched the image unevenly      vertically or horizontally.    - Made CMake check that libpng and libjpeg actually contain the link symbols      they are supposed to since, on some systems, these libraries aren't      installed correctly and will cause linker errors if used.    - Fixed assign_border_pixels(img, rect) so that it correctly zeros an image      when an empty rectangle is supplied. Previously, it did nothing to the      image in this case.    - Fixed compute_lda_transform() so it works properly when the class      covariance matrices are singular even after performing PCA.    - Fixed a bug in find_similarity_transform(). When given just two points as      inputs it would sometimes produce a reflection rather than a similarity      transform.    - Disabled all bindings to FFTW because FFTW isn't threadsafe.  其他    - Added an example program for dlib's SQLite API and made a few minor      usability improvements to the API as well.

Dlib是一个使用现代C++技术编写的跨平台的通用库,遵守Boost Software licence.

主要特点如下:

1.完善的文档:每个类每个函数都有详细的文档,并且提供了大量的示例代码,如果你发现文档描述不清晰或者没有文档,告诉作者,作者会立刻添加。

2.可移植代码:代码符合ISO C++标准,不需要第三方库支持,支持win32、Linux、Mac OS X、Solaris、HPUX、BSDs 和 POSIX 系统

3.线程支持:提供简单的可移植的线程API

4.网络支持:提供简单的可移植的Socket API和一个简单的Http服务器

5.图形用户界面:提供线程安全的GUI API

6.数值算法:矩阵、大整数、随机数运算等

7.机器学习算法:

8.图形模型算法:

9.图像处理:支持读写Windows BMP文件,不同类型色彩转换

10.数据压缩和完整性算法:CRC32、Md5、不同形式的PPM算法

11.测试:线程安全的日志类和模块化的单元测试框架以及各种测试assert支持

12.一般工具:XML解析、内存管理、类型安全的big/little endian转换、序列化支持和容器类

正文到此结束
Loading...