转载

lucene简单入门

说lucene是Java界的检索之王,当之无愧。近年来elasticsearch的火爆登场,包括之前的solr及solr cloud,其底层都是lucene。简单了解lucene,对使用elasticsearch还是有点帮助的。本文就简单过一下其简单的api使用。

添加依赖

        <dependency>             <groupId>org.apache.lucene</groupId>             <artifactId>lucene-core</artifactId>             <version>4.6.1</version>         </dependency>         <dependency>             <groupId>org.apache.lucene</groupId>             <artifactId>lucene-analyzers-common</artifactId>             <version>4.6.1</version>         </dependency>         <dependency>             <groupId>org.apache.lucene</groupId>             <artifactId>lucene-queryparser</artifactId>             <version>4.6.1</version>         </dependency>         <dependency>             <groupId>org.apache.lucene</groupId>             <artifactId>lucene-codecs</artifactId>             <version>4.6.1</version>         </dependency>

索引与检索

创建索引

File indexDir = new File(this.getClass().getClassLoader().getResource("").getFile());      @Test     public void createIndex() throws IOException { //        Directory index = new RAMDirectory();         Directory index = FSDirectory.open(indexDir);         // 0. Specify the analyzer for tokenizing text.         //    The same analyzer should be used for indexing and searching         StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_46);         IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_46, analyzer);          // 1. create the index         IndexWriter w = new IndexWriter(index, config);         addDoc(w, "Lucene in Action", "193398817");         addDoc(w, "Lucene for Dummies", "55320055Z");         addDoc(w, "Managing Gigabytes", "55063554A");         addDoc(w, "The Art of Computer Science", "9900333X");         w.close();     }      private void addDoc(IndexWriter w, String title, String isbn) throws IOException {         Document doc = new Document();         doc.add(new TextField("title", title, Field.Store.YES));         // use a string field for isbn because we don't want it tokenized         doc.add(new StringField("isbn", isbn, Field.Store.YES));         w.addDocument(doc);     }

检索

 @Test     public void search() throws IOException {         // 2. query         String querystr = "lucene";          // the "title" arg specifies the default field to use         // when no field is explicitly specified in the query.         Query q = null;         try {             StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_46);             q = new QueryParser(Version.LUCENE_46,"title", analyzer).parse(querystr);         } catch (Exception e) {             e.printStackTrace();         }          // 3. search         int hitsPerPage = 10;         Directory index = FSDirectory.open(indexDir);         IndexReader reader = DirectoryReader.open(index);         IndexSearcher searcher = new IndexSearcher(reader);         TopScoreDocCollector collector = TopScoreDocCollector.create(hitsPerPage, true);         searcher.search(q, collector);         ScoreDoc[] hits = collector.topDocs().scoreDocs;          // 4. display results         System.out.println("Found " + hits.length + " hits.");         for (int i = 0; i < hits.length; ++i) {             int docId = hits[i].doc;             Document d = searcher.doc(docId);             System.out.println((i + 1) + ". " + d.get("isbn") + "/t" + d.get("title"));         }          // reader can only be closed when there         // is no need to access the documents any more.         reader.close();     }

分词

对于搜索来说,分词出现在两个地方,一个是对用户输入的关键词进行分词,另一个是在索引文档时对文档内容的分词。两个分词最好一样,这样才可以更好地匹配出来。

    @Test     public void cutWords() throws IOException { //        StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_46); //        CJKAnalyzer analyzer = new CJKAnalyzer(Version.LUCENE_46);         SimpleAnalyzer analyzer = new SimpleAnalyzer();         String text = "Spark是当前最流行的开源大数据内存计算框架,采用Scala语言实现,由UC伯克利大学AMPLab实验室开发并于2010年开源。";         TokenStream tokenStream = analyzer.tokenStream("content", new StringReader(text));         CharTermAttribute charTermAttribute = tokenStream.addAttribute(CharTermAttribute.class);         try {             tokenStream.reset();             while (tokenStream.incrementToken()) {                 System.out.println(charTermAttribute.toString());             }             tokenStream.end();         } finally {             tokenStream.close();             analyzer.close();         }     }

输出

spark 是 当前 最 流行 的 开源 大数 据 内存 计算 框架 采用 scala 语言 实现 由 uc 伯克利 大学 amplab 实验室 开发 并于 2010 年 开源

本工程 github

参考

  • lucenetutorial

  • helloLucene

原文  https://segmentfault.com/a/1190000004422101
正文到此结束
Loading...