Kafka 0.9+增加了一个新的特性 Kafka Connect ,可以更方便的创建和管理数据流管道。它为Kafka和其它系统创建规模可扩展的、可信赖的流数据提供了一个简单的模型,通过 connectors 可以将大数据从其它系统导入到Kafka中,也可以从Kafka中导出到其它系统。Kafka Connect可以将完整的数据库注入到Kafka的Topic中,或者将服务器的系统监控指标注入到Kafka,然后像正常的Kafka流处理机制一样进行数据流处理。而导出工作则是将数据从Kafka Topic中导出到其它数据存储系统、查询系统或者离线分析系统等,比如数据库、 Elastic Search 、 Apache Ignite 等。
Kafka Connect特性包括:
基于Kafka, LinkedIn等一些大公司已经建立起架构类似的、可扩展的流数据平台。它包含两个功能,数据集成和流处理。Kafka Connect则是为数据集成而生。
多年来,Kafka已经成为处理大数据流的平台标准, 成千上万的公司在使用它 。程序员在构建它们的平台的时候也遇到一些问题:
这些棘手的问题都要程序员去处理,如果有一个统一的框架去完成这些事情,将可以大大减少程序员的工作量,因此Kafka 0.9中提供了这一特性,负责处理这些问题。
Kafka背后的公司confluent鼓励社区创建更多的开源的connector,将Kafka生态圈壮大起来,促进Kafka Connnect的应用。
Kafka Connnect有两个核心概念:Source和Sink。 Source负责导入数据到Kafka,Sink负责从Kafka导出数据,它们都被称为Connector。
当前Kafka Connect支持两种分发担保:at least once (至少一次) 和 at most once(至多一次),exactly once将在未来支持。
当前已有的Connectors包括:
Connector Name | Owner | Status |
HDFS | confluent-platform@googlegroups.com | Confluent supported |
JDBC | confluent-platform@googlegroups.com | Confluent supported |
Debezium - CDC Sources | debezium@gmail.com | Community project |
MongoDB Source | a.patelli@reply.de a.topchyan@reply.de | In progress |
MQTT Source | tomasz.pietrzak@evok.ly | Community project |
MySQL Binlog Source | wushujames@gmail.com | In progress |
Twitter Source | rollulus@xs4all.nl | In progress |
Cassandra Sink | Cassandra Sink | Community project |
Elastic Search Sink | ksenji@gmail.com | Community project |
Elastic Search Sink | hannes.stockner@gmail.com | In progress |
Elastic Search Sink | a.patelli@reply.de a.topchyan@reply.de | In progress |
Apache Ignite Sink | Apache Ignite Project | Community project (Planned for Apache Ignite 1.6 Release) |
Connectors的发布和开发可以参照 官方文档 。如果以前你通过producer API/consumer API写了一些导入导出的功能,不妨尝试一下换成Kafka Connect,看看是否简化了你的代码,提高了应用可扩展和容错的能力。