众所周知,随机数是任何一种编程语言最基本的特征之一。而生成随机数的基本方式也是相同的:产生一个0到1之间的随机数。看似简单,但有时我们也会忽略了一些有趣的功能。
我们从书本上学到什么?
最明显的,也是直观的方式,在Java中生成随机数只要简单的调用:
- java.lang.Math.random()
在所有其他语言中,生成随机数就像是使用Math工具类,如abs, pow, floor, sqrt和其他数学函数。大多数人通过书籍、教程和课程来了解这个类。一个简单的例子:从0.0到1.0之间可以生成一个双精度浮点数。那么通过上面的信息,开发人员要产生0.0和10.0之间的双精度浮点数会这样来写:
- Math.random() * 10
而产生0和10之间的整数,则会写成:
- Math.round(Math.random() * 10)
进 阶
通过阅读Math.random()的源码,或者干脆利用IDE的自动完成功能,开发人员可以很容易发现,java.lang.Math.random()使用一个内部的随机生成对象 - 一个很强大的对象可以灵活的随机产生:布尔值、所有数字类型,甚至是高斯分布。例如:
- new java.util.Random().nextInt(10)
它有一个缺点,就是它是一个对象。它的方法必须是通过一个实例来调用,这意味着必须先调用它的构造函数。如果在内存充足的情况下,像上面的表达式是可以接受的;但内存不足时,就会带来问题。
一个简单的解决方案,可以避免每次需要生成一个随机数时创建一个新实例,那就是使用一个静态类。猜你可能想到了java.lang.Math,很好,我们就是改良java.lang.Math的初始化。虽然这个工程量低,但你也要做一些简单的单元测试来确保其不会出错。
假设程序需要生成一个随机数来存储,问题就又来了。比如有时需要操作或保护种子(seed),一个内部数用来存储状态和计算下一个随机数。在这些特殊情况下,共用随机生成对象是不合适的。
并 发
在Java EE多线程应用程序的环境中,随机生成实例对象仍然可以被存储在类或其他实现类,作为一个静态属性。幸运的是,java.util.Random是线程安全的,所以不存在多个线程调用会破坏种子(seed)的风险。
另一个值得考虑的是多线程java.lang.ThreadLocal的实例。偷懒的做法是通过Java本身API实现单一实例,当然你也可以确保每一个线程都有自己的一个实例对象。
虽然Java没有提供一个很好的方法来管理java.util.Random的单一实例。但是,期待已久的Java 7提供了一种新的方式来产生随机数:
- java.util.concurrent.ThreadLocalRandom.current().nextInt(10)
这个新的API综合了其他两种方法的优点:单一实例/静态访问,就像Math.random()一样灵活。ThreadLocalRandom也比其他任何处理高并发的方法要更快。
经验
Chris Marasti-Georg 指出:
- Math.round(Math.random() * 10)
使分布不平衡,例如:0.0 - 0.499999将四舍五入为0,而0.5至1.499999将四舍五入为1。那么如何使用旧式语法来实现正确的均衡分布,如下:
- Math.floor(Math.random() * 11)
幸运的是,如果我们使用java.util.Random或java.util.concurrent.ThreadLocalRandom就不用担心上述问题了。
Java实战项目里面介绍了一些不正确使用java.util.Random API的危害。这个教训告诉我们不要使用:
- Math.abs(rnd.nextInt())%n
而使用:
- rnd.nextInt(n)
英文:http://www.summa-tech.com/blog/2012/03/14/the-several-flavors-of-random-in-java/