此为《算法的乐趣》读书笔记,我用javascript重新实现算法。
有三个容器分别是三升、五升和八升的水桶,其中容积为八升的水桶装满了水,其余两桶为空。水桶没有刻度,除这三个桶外不能使用其它容器,将8升水等分为两份4升的水。
以三水桶盛水量为一个矢量状态,倒水可以推动状态的改变,这样会形成一个状态树,我们采用深度优先搜索方式进行穷举。书中使用用了C++标准库的双端队列,还用了结构体,并将桶状态封装成了类,比较难看懂,我发现用javascript进行合理的设计,代码简单易懂^_^。
桶的最大容量及状态变化队列
var FullBacket = [8,5,3] //桶的最大容量 var states = [[8,0,0]]; //状态队列,js的数组已经已经有队列和堆栈的支持
限制条件为:桶的序号0~2;倒出水的桶为能为空;倒入水的桶不能是满的。
function CanTakeDumpAction(curr,from,to){ if(from >= 0 && from < 3 && to >= 0 && to < 3){ if(from != to && curr[from] > 0 && curr[to] < FullBacket[to]){ return true; } } return false; }
倒水量的计算要注意两个方面,一是目标桶的剩余容积;二是源桶的剩余水量,两者取小。
function DumpWater(curr,from,to){ var next = curr.slice(); //js对象为引用传值,这里要复制一份 var dump_water = FullBacket[to] - curr[to] > curr[from] ? curr[from] : FullBacket[to] - curr[to] //倒水量的计算 next[from] -= dump_water; next[to] += dump_water; return next; }
这个函数是保证不会进入死循环,注意:foreach中途不能退出,此处不能用它。
function IsStateExist(state){ for(var i = 0; i < states.length; i++){ if(state[0] == states[i][0] && state[1] == states[i][1] && state[2] == states[i][2]){ return true; } } return false; }
边界条件有两个,一为找到了正确解,一为所有状态都检测完,并未找到正确解。
(function SearchState(states){ var curr = states[states.length - 1]; if(curr[0] == 4 && curr[1] == 4){ //找到正确解 var rs = '' states.forEach(function(al){ rs += al.join(',') + ' -> '; }); console.log(rs.substr(0,rs.length - 4)) } for(var j = 0; j < 3; j++){ //所有的倒水方案即为桶编号的全排列 for(var i = 0; i < 3; i++){ if(i === 0 && j === 0) continue; if(CanTakeDumpAction(curr,i,j)){ var next = DumpWater(curr,i,j); if(!IsStateExist(next)){ //找到新状态 states.push(next); SearchState(states); states.pop(); } } } } })(states);
8,0,0 -> 3,5,0 -> 0,5,3 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 4,4,0 8,0,0 -> 3,5,0 -> 3,2,3 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 4,4,0 8,0,0 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 0,5,3 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 4,4,0 8,0,0 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 4,4,0 8,0,0 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 4,4,0 8,0,0 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 0,5,3 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 4,4,0 8,0,0 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 4,4,0 8,0,0 -> 3,5,0 -> 3,2,3 -> 0,5,3 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 4,4,0 8,0,0 -> 5,0,3 -> 0,5,3 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 4,4,0 8,0,0 -> 5,0,3 -> 5,3,0 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 4,4,0 8,0,0 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 0,5,3 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 4,4,0 8,0,0 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 4,4,0 8,0,0 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 0,5,3 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 4,4,0 8,0,0 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 7,0,1 -> 7,1,0 -> 4,1,3 -> 4,4,0 8,0,0 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 4,4,0 8,0,0 -> 5,0,3 -> 5,3,0 -> 2,3,3 -> 2,5,1 -> 0,5,3 -> 3,5,0 -> 3,2,3 -> 6,2,0 -> 6,0,2 -> 1,5,2 -> 1,4,3 -> 4,4,0