几乎所有的业务系统,都有生成一个记录标识的需求,例如:
这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序。
这个记录标识上的查询,往往又有分页或者排序的业务需求,例如:
所以往往要有一个time字段,并且在time字段上建立普通索引(non-cluster index)。
我们都知道普通索引存储的是实际记录的指针,其访问效率会比聚集索引慢,如果记录标识在生成时能够基本按照时间有序,则可以省去这个time字段的索引查询: select message-id/ (order by message-id)/limit 100再次强调,能这么做的前提是,message-id的生成基本是趋势时间递增的。
这就引出了记录标识生成(也就是上文提到的三个XXX-id)的两大核心需求:
这也是本文要讨论的核心问题:如何高效生成趋势有序的全局唯一ID。
如上图所述,由1个写库变成3个写库,每个写库设置不同的auto_increment初始值,以及相同的增长步长,以保证每个数据库生成的ID是不同的(上图中库0生成0,3,6,9…,库1生成1,4,7,10,库2生成2,5,8,11…) 改进后的架构保证了可用性,但缺点是:
为了解决上述两个问题,引出了第二个常见的方案
分布式系统之所以难,很重要的原因之一是“没有一个全局时钟,难以保证绝对的时序”,要想保证绝对的时序,还是只能使用单点服务,用本地时钟保证“绝对时序”。数据库写压力大,是因为每次生成ID都访问了数据库,可以使用批量的方式降低数据库写压力。 如上图所述,数据库使用双master保证可用性,数据库中只存储当前ID的最大值,例如0。ID生成服务假设每次批量拉取6个ID,服务访问数据库,将当前ID的最大值修改为5,这样应用访问ID生成服务索要ID,ID生成服务不需要每次访问数据库,就能依次派发0,1,2,3,4,5这些ID了,当ID发完后,再将ID的最大值修改为11,就能再次派发6,7,8,9,10,11这些ID了,于是数据库的压力就降低到原来的1/6了。
单点服务的常用高可用优化方案是“备用服务”,也叫“影子服务”,所以我们能用以下方法优化上述缺点(1): 如上图,对外提供的服务是主服务,有一个影子服务时刻处于备用状态,当主服务挂了的时候影子服务顶上。这个切换的过程对调用方是透明的,可以自动完成,常用的技术是vip+keepalived,具体就不在这里展开。
上述方案来生成ID,虽然性能大增,但由于是单点系统,总还是存在性能上限的。同时,上述两种方案,不管是数据库还是服务来生成ID,业务方Application都需要进行一次远程调用,比较耗时。有没有一种本地生成ID的方法,即高性能,又时延低呢? uuid是一种常见的方案:string ID =GenUUID();
uuid是一个本地算法,生成性能高,但无法保证趋势递增,且作为字符串ID检索效率低,有没有一种能保证递增的本地算法呢?取当前毫秒数是一种常见方案:uint64 ID = GenTimeMS();
如果并发量超过1000,会生成重复的ID
我去,这个缺点要了命了,不能保证ID的唯一性。当然,使用微秒可以降低冲突概率,但每秒最多只能生成1000000个ID,再多的话就一定会冲突了,所以使用微秒并不从根本上解决问题。
snowflake是twitter开源的分布式ID生成算法,其核心思想是:一个long型的ID,使用其中41bit作为毫秒数,10bit作为机器编号,12bit作为毫秒内序列号。这个算法单机每秒内理论上最多可以生成1000*(2^12),也就是400W的ID,完全能满足业务的需求。借鉴snowflake的思想,结合各公司的业务逻辑和并发量,可以实现自己的分布式ID生成算法。 举例,假设某公司ID生成器服务的需求如下:
分析过程如下:
这样设计的64bit标识,可以保证:
生成的ID,例如message-id/ order-id/ tiezi-id,在数据量大时往往需要分库分表,这些ID经常作为取模分库分表的依据,为了分库分表后数据均匀,ID生成往往有“取模随机性”的需求,所以我们通常把每秒内的序列号放在ID的最末位,保证生成的ID是随机的。 又如果,我们在跨毫秒时,序列号总是归0,会使得序列号为0的ID比较多,导致生成的ID取模后不均匀。解决方法是,序列号不是每次都归0,而是归一个0到9的随机数,这个地方。
原文链接: 架构师之路
作者:58沈剑
本文地址: 架构小站——细聊分布式ID生成方法
相关文章:Redis系列
欢迎大家关注我的微信公众号:中间件架构(middlewarearch)