关注仓库,及时获得更新: iOS-Source-Code-Analyze
因为 ObjC 的 runtime 只能在 Mac OS 下才能编译,所以文章中的代码都是在 Mac OS,也就是 x86_64
架构下运行的,对于在 arm64 中运行的代码会特别说明。
文章的标题与其说是问各位读者,不如说是问笔者自己: 我 真的了解 + load
方法么?
+ load
作为 Objective-C 中的一个方法,与其它方法有很大的不同。它只是一个 在整个文件被加载到运行时,在 main
函数调用之前被 ObjC 运行时调用的钩子方法 。其中关键字有这么几个:
main
函数之前 我在阅读 ObjC 源代码之前,曾经一度感觉自己对 + load
方法的作用非常了解,直到看了源代码中的实现,才知道以前的以为,只是自己的以为罢了。
这篇文章会假设你知道:
+ load
方法 + load
方法的调用顺序(文章中会简单介绍) 在这篇文章中并不会用大篇幅介绍 + load
方法的作用
,关注点主要在以下两个问题上:
+ load
方法是如何被调用的 + load
方法为什么会有这种调用顺序 首先来通过 load
方法的调用栈,分析一下它到底是如何被调用的。
下面是程序的全部代码:
// main.m #import <Foundation/Foundation.h> @interface XXObject : NSObject @end @implementation XXObject + (void)load { NSLog(@"XXObject load"); } @end int main(int argc, const char * argv[]) { @autoreleasepool { } return 0; }
代码总共只实现了一个 XXObject
的 + load
方法,主函数中也没有任何的东西:
虽然在主函数中什么方法都没有调用,但是运行之后,依然打印了 XXObject load
字符串,也就是说调用了 + load
方法。
使用 Xcode 添加一个符号断点 +[XXObject load]
:
注意这里 +
和 [
之间没有空格
为什么要加一个符号断点呢?因为这样看起来比较高级。
重新运行程序。这时,代码会停在 NSLog(@"XXObject load");
这一行的实现上:
左侧的调用栈很清楚的告诉我们,哪些方法被调用了:
0 +[XXObject load] 1 call_class_loads() 2 call_load_methods 3 load_images 4 dyld::notifySingle(dyld_image_states, ImageLoader const*) 11 _dyld_start
dyld 是 the dynamic link editor 的缩写,它是苹果的 动态链接器 。
在系统内核做好程序准备工作之后,交由 dyld 负责余下的工作。本文不会对其进行解释
每当有新的镜像加载之后,都会执行 3 load_images
方法进行回调,这里的回调是在整个运行时初始化时 _objc_init
注册的(会在之后的文章中具体介绍):
dyld_register_image_state_change_handler(dyld_image_state_dependents_initialized, 0/*not batch*/, &load_images);
有新的镜像被加载到 runtime 时,调用 load_images
方法,并传入最新镜像的信息列表 infoList
:
const char * load_images(enum dyld_image_states state, uint32_t infoCount, const struct dyld_image_info infoList[]) { bool found; found = false; for (uint32_t i = 0; i < infoCount; i++) { if (hasLoadMethods((const headerType *)infoList[i].imageLoadAddress)) { found = true; break; } } if (!found) return nil; recursive_mutex_locker_t lock(loadMethodLock); { rwlock_writer_t lock2(runtimeLock); found = load_images_nolock(state, infoCount, infoList); } if (found) { call_load_methods(); } return nil; }
这里就会遇到一个问题:镜像到底是什么,我们用一个断点打印出所有加载的镜像:
从控制台输出的结果大概就是这样的,我们可以看到镜像并不是一个 Objective-C 的代码文件,它应该是一个 target 的编译产物。
... (const dyld_image_info) $52 = { imageLoadAddress = 0x00007fff8a144000 imageFilePath = 0x00007fff8a144168 "/System/Library/Frameworks/CoreServices.framework/Versions/A/CoreServices" imageFileModDate = 1452737802 } (const dyld_image_info) $53 = { imageLoadAddress = 0x00007fff946d9000 imageFilePath = 0x00007fff946d9480 "/usr/lib/liblangid.dylib" imageFileModDate = 1452737618 } (const dyld_image_info) $54 = { imageLoadAddress = 0x00007fff88016000 imageFilePath = 0x00007fff88016d40 "/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation" imageFileModDate = 1452737917 } (const dyld_image_info) $55 = { imageLoadAddress = 0x0000000100000000 imageFilePath = 0x00007fff5fbff8f0 "/Users/apple/Library/Developer/Xcode/DerivedData/objc-dibgivkseuawonexgbqssmdszazo/Build/Products/Debug/debug-objc" imageFileModDate = 0 }
这里面有很多的动态链接库,还有一些苹果为我们提供的框架,比如 Foundation、 CoreServices 等等,都是在这个 load_images
中加载进来的,而这些 imageFilePath
都是对应的 二进制文件 的地址。
但是如果进入最下面的这个目录,会发现它是一个 可执行文件 ,它的运行结果与 Xcode 中的运行结果相同:
我们重新回到 load_images
方法,如果在扫描镜像的过程中发现了 + load
符号:
for (uint32_t i = 0; i < infoCount; i++) { if (hasLoadMethods((const headerType *)infoList[i].imageLoadAddress)) { found = true; break; } }
就会进入 load_images_nolock
来查找 load
方法:
bool load_images_nolock(enum dyld_image_states state,uint32_t infoCount, const struct dyld_image_info infoList[]) { bool found = NO; uint32_t i; i = infoCount; while (i--) { const headerType *mhdr = (headerType*)infoList[i].imageLoadAddress; if (!hasLoadMethods(mhdr)) continue; prepare_load_methods(mhdr); found = YES; } return found; }
调用 prepare_load_methods
对 load
方法的调用进行准备(将需要调用 load
方法的类添加到一个列表中,后面的小节中会介绍):
void prepare_load_methods(const headerType *mhdr) { size_t count, i; runtimeLock.assertWriting(); classref_t *classlist = _getObjc2NonlazyClassList(mhdr, &count); for (i = 0; i < count; i++) { schedule_class_load(remapClass(classlist[i])); } category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count); for (i = 0; i < count; i++) { category_t *cat = categorylist[i]; Class cls = remapClass(cat->cls); if (!cls) continue; // category for ignored weak-linked class realizeClass(cls); assert(cls->ISA()->isRealized()); add_category_to_loadable_list(cat); } }
通过 _getObjc2NonlazyClassList
获取所有的类的列表之后,会通过 remapClass
获取类对应的指针,然后调用 schedule_class_load
递归地安排当前类和没有调用 + load
父类 进入列表。
static void schedule_class_load(Class cls) { if (!cls) return; assert(cls->isRealized()); if (cls->data()->flags & RW_LOADED) return; schedule_class_load(cls->superclass); add_class_to_loadable_list(cls); cls->setInfo(RW_LOADED); }
在执行 add_class_to_loadable_list(cls)
将当前类加入加载列表之前,会 先把父类加入待加载的列表 ,保证父类在子类前调用 load
方法。
在将镜像加载到运行时、对 load
方法的准备就绪之后,执行 call_load_methods
,开始调用 load
方法:
void call_load_methods(void) { ... do { while (loadable_classes_used > 0) { call_class_loads(); } more_categories = call_category_loads(); } while (loadable_classes_used > 0 || more_categories); ... }
方法的调用流程大概是这样的:
其中 call_class_loads
会从一个待加载的类列表 loadable_classes
中寻找对应的类,然后找到 @selector(load)
的实现并执行。
static void call_class_loads(void) { int i; struct loadable_class *classes = loadable_classes; int used = loadable_classes_used; loadable_classes = nil; loadable_classes_allocated = 0; loadable_classes_used = 0; for (i = 0; i < used; i++) { Class cls = classes[i].cls; load_method_t load_method = (load_method_t)classes[i].method; if (!cls) continue; (*load_method)(cls, SEL_load); } if (classes) free(classes); }
这行 (*load_method)(cls, SEL_load)
代码就会调用 +[XXObject load]
方法。
我们会在下面介绍 loadable_classes
列表是如何管理的。
到现在,我们回答了第一个问题:
A:当 Objective-C 运行时初始化的时候,会通过 dyld_register_image_state_change_handler
在每次有新的镜像加入 运行时 的时候,进行回调。执行 load_images
将所有包含 load
方法的文件加入列表 loadable_classes
,然后从这个列表中找到对应的 load
方法的实现,调用 load
方法。
ObjC 对于加载的管理,主要使用了两个列表,分别是 loadable_classes
和 loadable_categories
。
方法的调用过程也分为两个部分,准备 load
方法和调用 load
方法,我更觉得这两个部分比较像生产者与消费者:
add_class_to_loadable_list
方法负责将类加入 loadable_classes
集合,而 call_class_loads
负责消费集合中的元素。
而对于分类来说,其模型也是类似的,只不过使用了另一个列表 loadable_categories
。
在调用 load_images -> load_images_nolock -> prepare_load_methods -> schedule_class_load -> add_class_to_loadable_list
的时候会将未加载的类添加到 loadable_classes
数组中:
void add_class_to_loadable_list(Class cls) { IMP method; loadMethodLock.assertLocked(); method = cls->getLoadMethod(); if (!method) return; if (loadable_classes_used == loadable_classes_allocated) { loadable_classes_allocated = loadable_classes_allocated*2 + 16; loadable_classes = (struct loadable_class *) realloc(loadable_classes, loadable_classes_allocated * sizeof(struct loadable_class)); } loadable_classes[loadable_classes_used].cls = cls; loadable_classes[loadable_classes_used].method = method; loadable_classes_used++; }
方法刚被调用时:
class
中获取 load
方法: method = cls->getLoadMethod();
loadable_classes
这个数组是否已经被全部占用了: loadable_classes_used == loadable_classes_allocated
realloc
class
以及对应的方法的实现加到列表中 另外一个用于保存分类的列表 loadable_categories
也有一个类似的方法 add_category_to_loadable_list
。
void add_category_to_loadable_list(Category cat) { IMP method; loadMethodLock.assertLocked(); method = _category_getLoadMethod(cat); if (!method) return; if (loadable_categories_used == loadable_categories_allocated) { loadable_categories_allocated = loadable_categories_allocated*2 + 16; loadable_categories = (struct loadable_category *) realloc(loadable_categories, loadable_categories_allocated * sizeof(struct loadable_category)); } loadable_categories[loadable_categories_used].cat = cat; loadable_categories[loadable_categories_used].method = method; loadable_categories_used++; }
实现几乎与 add_class_to_loadable_list
完全相同。
到这里我们完成了对 loadable_classes
以及 loadable_categories
的提供,下面会开始消耗列表中的元素。
调用 load
方法的过程就是“消费” loadable_classes
的过程, load_images -> call_load_methods -> call_class_loads
会从 loadable_classes
中取出对应类和方法,执行 load
。
void call_load_methods(void) { static bool loading = NO; bool more_categories; loadMethodLock.assertLocked(); if (loading) return; loading = YES; void *pool = objc_autoreleasePoolPush(); do { while (loadable_classes_used > 0) { call_class_loads(); } more_categories = call_category_loads(); } while (loadable_classes_used > 0 || more_categories); objc_autoreleasePoolPop(pool); loading = NO; }
上述方法对所有在 loadable_classes
以及 loadable_categories
中的类以及分类执行 load
方法。
do { while (loadable_classes_used > 0) { call_class_loads(); } more_categories = call_category_loads(); } while (loadable_classes_used > 0 || more_categories);
调用顺序如下:
+ load
方法,直到 loadable_classes
为空 call_category_loads
加载分类 loadable_classes
或者更多的分类,继续调用 load
方法 相比于类 load
方法的调用,分类中 load
方法的调用就有些复杂了:
static bool call_category_loads(void) { int i, shift; bool new_categories_added = NO; // 1. 获取当前可以加载的分类列表 struct loadable_category *cats = loadable_categories; int used = loadable_categories_used; int allocated = loadable_categories_allocated; loadable_categories = nil; loadable_categories_allocated = 0; loadable_categories_used = 0; for (i = 0; i < used; i++) { Category cat = cats[i].cat; load_method_t load_method = (load_method_t)cats[i].method; Class cls; if (!cat) continue; cls = _category_getClass(cat); if (cls && cls->isLoadable()) { // 2. 如果当前类是可加载的 `cls && cls->isLoadable()` 就会调用分类的 load 方法 (*load_method)(cls, SEL_load); cats[i].cat = nil; } } // 3. 将所有加载过的分类移除 `loadable_categories` 列表 shift = 0; for (i = 0; i < used; i++) { if (cats[i].cat) { cats[i-shift] = cats[i]; } else { shift++; } } used -= shift; // 4. 为 `loadable_categories` 重新分配内存,并重新设置它的值 new_categories_added = (loadable_categories_used > 0); for (i = 0; i < loadable_categories_used; i++) { if (used == allocated) { allocated = allocated*2 + 16; cats = (struct loadable_category *) realloc(cats, allocated * sizeof(struct loadable_category)); } cats[used++] = loadable_categories[i]; } if (loadable_categories) free(loadable_categories); if (used) { loadable_categories = cats; loadable_categories_used = used; loadable_categories_allocated = allocated; } else { if (cats) free(cats); loadable_categories = nil; loadable_categories_used = 0; loadable_categories_allocated = 0; } return new_categories_added; }
这个方法有些长,我们来分步解释方法的作用:
cls && cls->isLoadable()
就会调用分类的 load
方法 loadable_categories
列表 loadable_categories
重新分配内存,并重新设置它的值 你过去可能会听说过,对于 load
方法的调用顺序有两条规则:
这种现象是非常符合我们的直觉的,我们来分析一下这种现象出现的原因。
第一条规则是由于 schedule_class_load
有如下的实现:
static void schedule_class_load(Class cls) { if (!cls) return; assert(cls->isRealized()); if (cls->data()->flags & RW_LOADED) return; schedule_class_load(cls->superclass); add_class_to_loadable_list(cls); cls->setInfo(RW_LOADED); }
这里通过这行代码 schedule_class_load(cls->superclass)
总是能够保证没有调用 load
方法的父类先于子类加入 loadable_classes
数组,从而确保其调用顺序的正确性。
类与分类中 load
方法的调用顺序主要在 call_load_methods
中实现:
do { while (loadable_classes_used > 0) { call_class_loads(); } more_categories = call_category_loads(); } while (loadable_classes_used > 0 || more_categories);
上面的 do while
语句能够在一定程度上确保,类的 load
方法会先于分类调用。但是这里不能完全保证调用顺序的正确。
如果 分类的镜像在类的镜像之前加载到运行时 ,上面的代码就没法保证顺序的正确了,所以,我们还需要在 call_category_loads
中判断类是否已经加载到内存中(调用 load
方法):
if (cls && cls->isLoadable()) { (*load_method)(cls, SEL_load); cats[i].cat = nil; }
这里,检查了类是否存在并且是否可以加载,如果都为真,那么就可以调用分类的 load 方法了。
load
可以说我们在日常开发中可以接触到的调用时间 最靠前的方法 ,在主函数运行之前, load
方法就会调用。
由于它的调用不是 惰性 的,且其只会在程序调用期间调用一次,最最重要的是,如果在类与分类中都实现了 load
方法,它们都会被调用,不像其它的在分类中实现的方法会被覆盖,这就使 load
方法成为了 方法调剂 的绝佳时机。
但是由于 load
方法的运行时间过早,所以这里可能不是一个理想的环境,因为 某些类可能需要在在其它类之前加载 ,但是这是我们无法保证的。不过在这个时间点,所有的 framework 都已经加载到了运行时中,所以调用 framework 中的方法都是安全的。