转载

Python 和 R 数据分析/挖掘工具互查

写在前面

在此总结一些在数据分析/挖掘中可能用到的功能,方便大家索引或者从一种语言迁移到另一种。当然,这篇博客还会随时更新(不会另起一篇,为了方便大家索引),请大家如果有需要收藏到书签中。

如果大家还知道哪些常用的命令,也可以在评论中回复我。

如果大家已经熟悉python和R的模块/包载入方式,那下面的表查找起来相对方便。python在下表中以模块 . 的方式引用,部分模块并非原生模块,请使用

pip install *

安装;同理,为了方便索引,R中也以 :: 表示了函数以及函数所在包的名字,如果不含 :: 表示为R的默认包中就有,如含 :: ,请使用

install.packages("*")

安装。

连接器与io

数据库

类别 Python R
MySQL mysql-connector-python(官方) RMySQL
Oracle cx_Oracle ROracle
Redis redis rredis
MongoDB pymongo RMongo, rmongodb
neo4j py2neo RNeo4j
ODBC pyodbc RODBC
JDBC 未知[Jython Only] RJDBC

IO类

类别 Python R
excel xlsxWriter, pandas.(from/to)_excel, openpyxl openxlsx::read.xlsx(2), xlsx::read.xlsx(2)
csv csv.writer read.csv(2), read.table
json json jsonlite
图片 PIL jpeg, png, tiff, bmp

统计类

回归(包括统计和机器学习)

类别 Python R
普通最小二乘法回归(ols) statsmodels.ols, sklearn.linear_model.LinearRegression lm,
广义线性回归(gls) statsmodels.gls nlme::gls, MASS::gls
分位数回归(Quantile Regress) statsmodels.QuantReg quantreg::rq
岭回归 sklearn.linear_model.Ridge MASS::lm.ridge, ridge::linearRidge
LASSO sklearn.linear_model.Lasso lars::lars
最小角回归 sklearn.linear_modle.LassoLars lars::lars
稳健回归 statsmodels.RLM MASS::rlm

假设检验

类别 Python R
t检验 statsmodels.stats.ttest_ind, statsmodels.stats.ttost_ind, statsmodels.stats.ttost.paired; scipy.stats.ttest_1samp, scipy.stats.ttest_ind, scipy.stats.ttest_ind_from_stats, scipy.stats.ttest_rel t.test
ks检验(检验分布) scipy.stats.kstest, scipy.stats.kstest_2samp ks.test
wilcoxon(非参检验,差异检验) scipy.stats.wilcoxon wilcox.test
Shapiro-Wilk正态性检验 未知 shapiro.test
Pearson相关系数检验 scipy.stats.pearsonr cor.test

时间序列

类别 Python R
AR statsmodels.ar_model.AR ar
ARIMA statsmodels.arima_model.arima arima
VAR statsmodels.var_model.var 未知

生存分析

类别 Python R
PH回归 statsmodels.formula.api.phreg 未知

机器学习类

回归

参见统计类

分类器

LDA、QDA

类别 Python R
LDA sklearn.discriminant_analysis.LinearDiscriminantAnalysis MASS::lda
QDA sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis MASS::qda

SVM(支持向量机)

类别 Python R
支持向量分类器(SVC) sklearn.svm.SVC e1071::svm
非支持向量分类器(nonSVC) sklearn.svm.NuSVC 未知
线性支持向量分类器(Lenear SVC) sklearn.svm.LinearSVC 未知

基于临近

类别 Python R
k-临近分类器 sklearn.neighbors.KNeighborsClassifier 未知
半径临近分类器 sklearn.neighbors.RadiusNeighborsClassifier 未知
临近重心分类器(Nearest Centroid Classifier) sklearn.neighbors.NearestCentroid 未知

贝叶斯

类别 Python R
朴素贝叶斯 sklearn.naive_bayes.GaussianNB e1071::naiveBayes
多维贝叶斯(Multinomial Naive Bayes) sklearn.naive_bayes.MultinomialNB 未知
伯努利贝叶斯(Bernoulli Naive Bayes) sklearn.naive_bayes.BernoulliNB 未知

决策树

类别 Python R
决策树分类器 sklearn.tree.DecisionTreeClassifier tree::tree, party::ctree
决策树回归器 sklearn.tree.DecisionTreeRegressor tree::tree, party::tree
随机森林分类器 sklearn.ensemble.RandomForestClassifier randomForest::randomForest, party::cforest
随机森林回归器 sklearn.ensemble.RandomForestRegressor randomForest::randomForest, party::cforest

聚类

类别 Python R
kmeans scipy.cluster.kmeans.kmeans kmeans::kmeans
分层聚类 scipy.cluster.hierarchy.fcluster (stats::)hclust
包聚类(Bagged Cluster) 未知 e1071::bclust
DBSCAN sklearn.cluster.DBSCAN dbscan::dbsan
Birch sklearn.cluster.Birch 未知
K-Medoids聚类 pyclust.KMedoids(可靠性未知) cluster.pam

文本、NLP

基本操作

类别 Python R
tokenize nltk.tokenize(英), jieba.tokenize(中) tau::tokenize
stem nltk.stem RTextTools::wordStem, SnowballC::wordStem
stopwords stop_words.get_stop_words tm::stopwords, qdap::stopwords
中文分词 jieba.cut, smallseg, Yaha, finalseg, genius jiebaR

主题模型

类别 Python R
LDA lda.LDA topicmodels::LDA
原文  https://segmentfault.com/a/1190000005041649
正文到此结束
Loading...