过去的一年中,关于Docker 的话题从未断过,而如今,从尝试 Docker 到最终决定使用 Docker 的转化率依然在逐步升高,关于 Docker 的讨论更是有增无减。另一方面,大家的注意力也渐渐从 “Docker 是什么”转移到“实践 Docker”与“监控 Docker”上。
本文转自刘斌博文 「如何选择 Docker 监控方案 」 ,文中刘斌从技术的角度深入解释了Docker 监控的数据采集原理,介绍了现有开源的监控方案,以及能够对 Docker 进行监控功能的主流SaaS 服务工具。
上一篇文章中介绍了 Docker 监控目的及技术基础,本篇文章将介绍,Docker 监控方案的实现。
Docker 监控方案的实现
自己动手 + 开源软件
SaaS
评价标准
功能
满足
信息详细程度
查询的灵活程度
报警 + API
灵活性
定制
成本
学习、开发
维护
运维
部署复杂程度
高可用
需要考虑的基本要素如上所示,不多述。
自己动手
灵活性强
成本高
这里的成本包括开发成本,开发成本可能包括招人和培训,开发时间和填坑时间。开发完了还需要维护成本,而且随着Docker的升级,可能还需要对metric的采集实现进行升级,以及各种bugfix。
自己动手打造监控方案
采集
存储
展示
报警(动作)
StatsD 是 Flickr 公司首先提出来的,后来由 Esty 公司发扬光大的一个轻量级的指标采集模块。
简单来讲,StatsD 就是一个简单的网络守护进程,基于Node.js 平台(Esty实现,其实也有其他语言版本),通过 UDP 或者 TCP 方式侦听各种统计信息,包括计数器和定时器,可以用来采集操作系统、不同数据库、中间件的数据指标,进行缓存、聚合,并发送到Graphite 等存储和可视化系统中。
StatsD 具有以下优点:
简单
首先安装部署简单,且StatsD 协议是基于文本的,可以直接写入和读取,方便实现各种客户端和SDK。
Cloud Insight的探针也是采用这些方式,我们有些SDK也是基于StatsD的,目前有Ruby、 Python 和Java的,在 GitHub 上可以看到。
低耦合性
StatsD 守护进程采取 UDP 这种无状态的协议,收集指标和应用程序本身之间没有依赖,不会阻塞应用,不管StatsD的状态是运行中,还是没在运行,都不会影响应用程序,应用程序也不关心StatsD是否收到数据。
易集成
StatsD非常容易整合其他组件,可以自己编写采集业务逻辑,发送到StatsD守护进程即可。也就是说用户的工作很简单,只需要按定义好的规则采集数据发送到Stats,然后用Graphite存储、展示,通过使用Riemann进行报警。
Tcollector
来源于OpenTSDB
Tcollector 是一个采集指标数据并保存到OpenTSDB的框架,你可以使用该框架自己编写采集的业务逻辑。类似StatsD,运行在客户端,收集本地的metric信息,推送到OpenTSDB。
Collectd
System statistics collection daemon
存储到RRD
插件机制(input/output)
简单报警功能
Collectd即是一个守护进程,也是一个框架,类似StatsD,它性能非常好,采用C语言编写。Collectd不直接支持从Docker中取数据,但是我们可以自己编写插件来采集性能指标数据。
Collectd有强大的插件机制,已经实现了包括amqp、rrdtool、graphite、http、kafka、redis、mongodb、OpenTSDB以及CSV文件等在内的各种插件。
在4.3版本之后还支持简单的基于阈值检查的报警机制。
cAdvisor是一个用于收集、聚合处理和输出容器运行指标的守护进程。而且cAdvisor基本算是一个获取Docker性能数据的标配了吧。
1.
一句命令就可以启动cAdvisor容器,访问8080端口即可看到性能指标数据。cAdvisor可以通过storage_driver参数将数据存到influxdb,同时也可以将metric输出为Prometheus的格式,所以很多自定义Docker监控系统都会采取cAdvisor + Prometheus 的组合。
存储TSDB
OpenTSDB
Influxdb
RRDTool
Graphite
关于时序列数据库,可以看附录中相关的介绍文章。推荐使用OpenTSDB或者Influxdb,简单对比一下各自特点如下:
OpenTSDB
Java & HBase
易扩展(集群功能强大)
机器多,运维稍显麻烦
Influxdb
Golang
集群功能不太成熟
有类SQL的查询语句
单台即可工作
这两者都支持自由模式和多维度,非常适合用于采用tag机制的数据模式建模。
开源可视化工具
Graphite
Influxdb + Grafana
Prometheus
光有数据是不够的,raw data没有任何意义,我们需要良好的可视化组件来展示数据和数据的内在意义,发挥数据的作用。
我们也可以将数据存储和展示交给其他开源软件。
如果你的数据采集和存储都是自己来完成的,只想使用一个外部的图形化界面的话,选Grafana应该没错,Grafana展现形式非常丰富,配置也很灵活。
以上,先到这里。
下一章,刘斌将为大家介绍 Docker 监控的开原方案,主流 SaaS 服务,及其特点。
超好用的监控软件Cloud Insight 不仅能监控 Docker,还能对 Nagios 进行更好的可视化 哦~
阅读更多技术文章,请访问OneAPM 官方博客。