Array.prototype.sort 方法被许多 JavaScript 程序员误用来随机排列数组。最近做的 前端星计划 挑战项目中,一道实现 blackjack 游戏的问题,就发现很多同学使用了 Array.prototype.sort 来洗牌。就连最近一期 JavaScript Weekly 上推荐的 一篇文章 也犯了同样的错误。
以下就是常见的 完全错误 的随机排列算法:
function shuffle(arr){ return arr.slice(0).sort(function(){ return Math.random() - 0.5; }); }
以上代码看似巧妙利用了 Array.prototype.sort 实现随机,但是,却有非常严重的问题,甚至是完全错误。
为了证明这个算法的 错误 ,我们设计一个测试的方法。假定这个排序算法是正确的,那么,将这个算法用于随机数组 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],如果算法正确,那么每个数字在每一位出现的概率均等。因此,将数组重复洗牌足够多次,然后将每次的结果在每一位相加,最后对每一位的结果取平均值,这个平均值应该约等于 (0 + 9) / 2 = 4.5
,测试次数越多次,每一位上的平均值就都应该越接近于 4.5。所以我们简单实现测试代码如下:
var arr = [0,1,2,3,4,5,6,7,8,9]; var res = [0,0,0,0,0,0,0,0,0,0]; var t = 10000; for(var i = 0; i < t; i++){ var sorted = shuffle(arr); sorted.forEach(function(o,i){ res[i] += o; }); } res = res.map(function(o){ return o / t; }); console.log(res);
将上面的 shuffle
方法用这段测试代码在 chrome 浏览器中测试一下,可以得出 结果 ,发现结果并不随机分布,各个位置的平均值越往后越大,这意味着这种随机算法 越大的数字出现在越后面的概率越大 。
为什么会产生这个结果呢?我们需要了解 Array.prototype.sort 究竟是怎么作用的。
首先我们知道排序算法有很多种,而 ECMAScript 并没有规定 Array.prototype.sort 必须使用何种排序算法。在这里,有兴趣的同学不妨看一下 JavaScriptCore 的源码实现:
排序不是我们今天讨论的主题,但是不论用何种排序算法,都是需要进行两个数之间的比较和交换,排序算法的效率和两个数之间比较和交换的次数有关系。
最基础的排序有冒泡排序和插入排序,原版的冒泡或者插入排序都比较了 n(n-1)/2 次,也就是说任意两个位置的元素都进行了一次比较。那么在这种情况下,如果采用前面的 sort 随机算法,由于每次比较都有 50% 的几率交换和不交换,这样的结果是随机均匀的,我们可以看一下 例子 :
function bubbleSort(arr, compare){ for(var i = 0; i < arr.length; i++){ for(var j = i; j < arr.length; j++){ if(compare(arr[i], arr[j]) > 0){ var tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } } } return arr; } function shuffle(arr){ return bubbleSort(arr, function(){ return Math.random() - 0.5; }); } var arr = [0,1,2,3,4,5,6,7,8,9]; var res = [0,0,0,0,0,0,0,0,0,0]; var t = 10000; for(var i = 0; i < t; i++){ var sorted = shuffle(arr); sorted.forEach(function(o,i){ res[i] += o; }); } res = res.map(function(o){ return o / t; }); console.log(res);
上面的代码的随机结果是均匀的。
除了每个位置两两都比较一次的这种排序算法外,大多数排序算法的时间复杂度介于 O(n) 到 O(n 2 ) 之间,元素之间的比较次数通常情况下要远小于 n(n-1)/2,也就意味着有一些元素之间根本就没机会相比较(也就没有了随机交换的可能),正因为如此,导致了 sort 随机排序的算法没能真正随机。
我们将上面的代码改一下,采用快速排序:
function quickSort(arr, compare){ arr = arr.slice(0); if(arr.length <= 1) return arr; var mid = arr[0], rest = arr.slice(1); var left = [], right = []; for(var i = 0; i < rest.length; i++){ if(compare(rest[i], mid) > 0){ right.push(rest[i]); }else{ left.push(rest[i]); } } return quickSort(left, compare).concat([mid]) .concat(quickSort(right, compare)); } function shuffle(arr){ return quickSort(arr, function(){ return Math.random() - 0.5; }); } var arr = [0,1,2,3,4,5,6,7,8,9]; var res = [0,0,0,0,0,0,0,0,0,0]; var t = 10000; for(var i = 0; i < t; i++){ var sorted = shuffle(arr); sorted.forEach(function(o,i){ res[i] += o; }); } res = res.map(function(o){ return o / t; }); console.log(res);
可以看到,由于快速排序并没有两两元素进行比较,因此它的概率分布就不随机了。
所以我们可以得出结论,用 Array.prototype.sort 随机交换的方式来随机排列数组,得到的结果并不一定随机,而是取决于排序算法是如何实现的,用 JavaScript 内置的排序算法这么排序,通常肯定是 不完全随机的 。
所有空间复杂度 O(1) 的排序算法的时间复杂度都介于 O(nlogn) 到 O(n 2 ) 之间,因此在不考虑算法结果错误的前提下,使用排序来随机交换也是慢的。事实上,随机数组元素有经典的 O(n) 复杂度的算法:
function shuffle(arr){ var len = arr.length; for(var i = 0; i < len - 1; i++){ var idx = Math.floor(Math.random() * (len - i)); var temp = arr[idx]; arr[idx] = arr[len - i - 1]; arr[len - i -1] = temp; } return arr; }
在上面的算法里,我们每一次循环从前 len - i 个元素里随机一个位置,将这个元素和第 len - i 个元素进行交换,迭代直到 i = len - 1 为止。
我们同样可以检验一下这个算法的随机性:
function shuffle(arr){ var len = arr.length; for(var i = 0; i < len - 1; i++){ var idx = Math.floor(Math.random() * (len - i)); var temp = arr[idx]; arr[idx] = arr[len - i - 1]; arr[len - i -1] = temp; } return arr; } //console.log(shuffle2([1,2,3,4,5,6,7,8,9])); var arr = [0,1,2,3,4,5,6,7,8,9]; var res = [0,0,0,0,0,0,0,0,0,0]; var t = 10000; for(var i = 0; i < t; i++){ var sorted = shuffle(arr); sorted.forEach(function(o,i){ res[i] += o; }); } res = res.map(function(o){ return o / t; }); console.log(res);
从结果可以看出这个算法是完全随机的。事实上我们还可以简单从数学上证明这个算法的随机性。
对 n 个数进行随机:
首先我们考虑 n = 2 的情况,根据算法,显然有 1/2 的概率两个数交换,有 1/2 的概率两个数不交换,因此对 n = 2 的情况,元素出现在每个位置的概率都是 1/2,满足随机性要求。
假设有 i 个数, i >= 2 时,算法随机性符合要求,即每个数出现在 i 个位置上每个位置的概率都是 1/i。
对于 i + 1 个数,按照我们的算法,在第一次循环时,每个数都有 1/(i+1) 的概率被交换到最末尾,所以每个元素出现在最末一位的概率都是 1/(i+1) 。而每个数也都有 i/(i+1) 的概率不被交换到最末尾,如果不被交换,从第二次循环开始还原成 i 个数随机,根据 2. 的假设,它们出现在 i 个位置的概率是 1/i。因此每个数出现在前 i 位任意一位的概率是 (i/(i+1)) * (1/i) = 1/(i+1)
,也是 1/(i+1)。
综合 1. 2. 3. 得出,对于任意 n >= 2,经过这个算法,每个元素出现在 n 个位置任意一个位置的概率都是 1/n。
一个优秀的算法要同时满足结果正确和高效率。很不幸使用 Array.prototype.sort 方法这两个条件都不满足。因此,当我们需要实现类似洗牌的功能的时候,还是应该采用巧妙的经典洗牌算法,它不仅仅具有完全随机性还有很高的效率。
除了收获这样的算法之外,我们还应该认真对待这种动手分析和解决问题的思路,并且捡起我们曾经学过而被大多数人遗忘的数学(比如数学归纳法这种经典的证明方法)。
有任何问题欢迎与作者探讨~