转载

Flume+Kafka收集Docker容器内分布式日志应用实践

3.1 Producer层分析

PaaS平台内的服务假设部署在Docker容器内,那么为了满足非功能需求#1,独立另外一个进程负责收集日志,因此不侵入服务框架和进程。采用 Flume NG 来进行日志的收集,这个开源的组件非常强大,可以看做一种监控、生产增量,并且可以发布、消费的模型,Source就是源,是增量源,Channel是缓冲通道,这里使用内存队列缓冲区,Sink就是槽,是个消费的地方。容器内的Source就是执行tail -F这个命令的去利用linux的标准输出读取增量日志,Sink是一个Kafka的实现,用于推送消息到分布式消息中间件。

3.2 Broker层分析

PaaS平台内的多个容器,会存在多个Flume NG的客户端去推送消息到Kafka消息中间件。Kafka是一个吞吐量、性能非常高的消息中间件,采用单个分区按照顺序的写入的方式工作,并且支持按照offset偏移量随机读取的特性,因此非常适合做topic发布订阅模型的实现。这里图中有多个Kafka,是因为支持集群特性,容器内的Flume NG客户端可以连接若干个Kafka的broker发布日志,也可以理解为连接若干个topic下的分区,这样可以实现高吞吐,一来可以在Flume NG内部做打包批量发送来减轻QPS压力,二来可以分散到多个分区写入,同时Kafka还会指定replica备份个数,保证写入某个master后还需要写入N个备份,这里设置为2,没有采用常用的分布式系统的3,是因为尽量保证高并发特性,满足非功能需求中的#4。

3.3 Consumer层分析

消费Kafka增量的也是一个Flume NG,可以看出它的强大之处,在于可以接入任意的数据源,都是可插拔的实现,通过少量配置即可。这里使用Kafka Source订阅topic,收集过来的日志同样先入内存缓冲区,之后使用一个File Sink写入文件,为了满足功能需求#2,可区分来源,按服务、模块和天粒度切分,我自己实现了一个Sink,叫做RollingByTypeAndDayFileSink,源代码放到了 github 上,可以从这个 页面下载 jar,直接放到flume的lib目录即可。

原文  http://neoremind.com/2016/05/flumekafka收集docker容器内分布式日志应用实践/
正文到此结束
Loading...