通过adb命令可获取bugrepport信息,并输出到文件当前路径的bugreport.txt文件:
adb bugreport > bugreport.txt
对于Android系统调试分析,bugreport信息量非常之大,几乎涵盖整个系统各个层面内容,对于分析BUG是一大利器。 本文先从从源码角度来分析一下Bugreport的实现原理,下一篇文章再进一步阐述Bugreport实战分析。
Android系统源码中framework/native/cmds/bugreport目录通过Android.mk定义了bugreport项目,在系统编译完成后会生成bugreport可执行文件,位于系统/system/bin/bugreport。当执行 adb bugreport
时,便会调用这个可执行文件,进入bugreport.cpp中的main()方法。
[-> bugreport.cpp]
int main() { //启动dumpstate服务 property_set("ctl.start", "dumpstate"); //需要多次尝试,直到dumpstate服务启动完成,才能建立socket通信 int s; for (int i = 0; i < 20; i++) { s = socket_local_client("dumpstate", ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_STREAM); if (s >= 0) break; //休眠1s后再次尝试连接 sleep(1); } if (s == -1) { printf("Failed to connect to dumpstate service: %s/n", strerror(errno)); return 1; } //当3分钟没有任何数据可读,则超时停止读取并退出。 //dumpstate服务中不存在大于1分钟的timetout,因而不可预见的超时的情况下留有很大的回旋余地。 struct timeval tv; tv.tv_sec = 3 * 60; tv.tv_usec = 0; if (setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) == -1) { printf("WARNING: Cannot set socket timeout: %s/n", strerror(errno)); } while (1) { char buffer[65536]; ssize_t bytes_read = TEMP_FAILURE_RETRY(read(s, buffer, sizeof(buffer))); if (bytes_read == 0) { break; } else if (bytes_read == -1) { // EAGAIN意味着timeout,Bugreport读异常终止 if (errno == EAGAIN) { errno = ETIMEDOUT; } break; } ssize_t bytes_to_send = bytes_read; ssize_t bytes_written; //不断循环得将读取数据输出到stdout do { bytes_written = TEMP_FAILURE_RETRY(write(STDOUT_FILENO, buffer + bytes_read - bytes_to_send, bytes_to_send)); if (bytes_written == -1) { return 1; //将数据无法写入stdout } bytes_to_send -= bytes_written; } while (bytes_written != 0 && bytes_to_send > 0); } close(s); return 0; }
该过程先启动 dumpstate
服务,Bugreport再通过socket建立于dumpstate的通信,这个过程会尝试20次socket连接建立直到成功连接。 在socket通道中如果持续3分钟没有任何数据可读,则超时停止读取并退出。由于dumpstate服务中不存在大于1分钟的timetout,因而不可预见的超时的情况下留有很大的回旋余地。
当从socket读取到数据后,写入到标准时输出或者重定向到文件。可见bugreport数据的来源都是dumpstate服务,那么接下来去看看dumpstate服务的工作。
[-> dumpstate.cpp]
int main(int argc, char *argv[]) { struct sigaction sigact; int do_add_date = 0; int do_vibrate = 1; char* use_outfile = 0; int use_socket = 0; int do_fb = 0; int do_broadcast = 0; if (getuid() != 0) { //兼容性考虑,旧版本支持直接调用dumpstate命令,新版本通过调用/system/bin/bugreport来替代。 //当检测到直接调用,则强制执行bugreport命令。 return execl("/system/bin/bugreport", "/system/bin/bugreport", NULL); } ALOGI("begin/n"); //清空句柄SIGPIPE memset(&sigact, 0, sizeof(sigact)); sigact.sa_handler = sigpipe_handler; sigaction(SIGPIPE, &sigact, NULL); //提高当前进程的优先级,防止被OOM Killer杀死 setpriority(PRIO_PROCESS, 0, -20); FILE *oom_adj = fopen("/proc/self/oom_adj", "we"); if (oom_adj) { fputs("-17", oom_adj); fclose(oom_adj); } //参数解析 int c; while ((c = getopt(argc, argv, "dho:svqzpB")) != -1) { switch (c) { case 'd': do_add_date = 1; break; case 'o': use_outfile = optarg; break; case 's': use_socket = 1; break; case 'v': break; // compatibility no-op case 'q': do_vibrate = 0; break; case 'p': do_fb = 1; break; case 'B': do_broadcast = 1; break; case '?': printf("/n"); case 'h': usage(); exit(1); } } //建立socket if (use_socket) { redirect_to_socket(stdout, "dumpstate"); } //打开vibrator FILE *vibrator = 0; if (do_vibrate) { vibrator = fopen("/sys/class/timed_output/vibrator/enable", "we"); if (vibrator) { vibrate(vibrator, 150); } } //读取/proc/cmdline FILE *cmdline = fopen("/proc/cmdline", "re"); if (cmdline != NULL) { fgets(cmdline_buf, sizeof(cmdline_buf), cmdline); fclose(cmdline); } //收集虚拟机和native进程的stack traces(需要root权限) dump_traces_path = dump_traces(); //获取tombstone文件描述符 get_tombstone_fds(tombstone_data); //确保capabilities if (prctl(PR_SET_KEEPCAPS, 1) < 0) { ALOGE("prctl(PR_SET_KEEPCAPS) failed: %s/n", strerror(errno)); return -1; } //切换到非root用户和组,在切换之前都是处于root权限 gid_t groups[] = { AID_LOG, AID_SDCARD_R, AID_SDCARD_RW, AID_MOUNT, AID_INET, AID_NET_BW_STATS }; if (setgroups(sizeof(groups)/sizeof(groups[0]), groups) != 0) { ALOGE("Unable to setgroups, aborting: %s/n", strerror(errno)); return -1; } if (setgid(AID_SHELL) != 0) { ALOGE("Unable to setgid, aborting: %s/n", strerror(errno)); return -1; } if (setuid(AID_SHELL) != 0) { ALOGE("Unable to setuid, aborting: %s/n", strerror(errno)); return -1; } struct __user_cap_header_struct capheader; struct __user_cap_data_struct capdata[2]; memset(&capheader, 0, sizeof(capheader)); memset(&capdata, 0, sizeof(capdata)); capheader.version = _LINUX_CAPABILITY_VERSION_3; capheader.pid = 0; capdata[CAP_TO_INDEX(CAP_SYSLOG)].permitted = CAP_TO_MASK(CAP_SYSLOG); capdata[CAP_TO_INDEX(CAP_SYSLOG)].effective = CAP_TO_MASK(CAP_SYSLOG); capdata[0].inheritable = 0; capdata[1].inheritable = 0; if (capset(&capheader, &capdata[0]) < 0) { ALOGE("capset failed: %s/n", strerror(errno)); return -1; } //如果需要,则重定向输出 char path[PATH_MAX], tmp_path[PATH_MAX]; pid_t gzip_pid = -1; if (!use_socket && use_outfile) { strlcpy(path, use_outfile, sizeof(path)); if (do_add_date) { char date[80]; time_t now = time(NULL); strftime(date, sizeof(date), "-%Y-%m-%d-%H-%M-%S", localtime(&now)); strlcat(path, date, sizeof(path)); } if (do_fb) { strlcpy(screenshot_path, path, sizeof(screenshot_path)); strlcat(screenshot_path, ".png", sizeof(screenshot_path)); } strlcat(path, ".txt", sizeof(path)); strlcpy(tmp_path, path, sizeof(tmp_path)); strlcat(tmp_path, ".tmp", sizeof(tmp_path)); redirect_to_file(stdout, tmp_path); } //这里是真正干活的地方 【见小节 3.3】 dumpstate(); //通过震动提醒已完成所有dump操作 if (vibrator) { for (int i = 0; i < 3; i++) { vibrate(vibrator, 75); usleep((75 + 50) * 1000); } fclose(vibrator); } //等待gzip的完成,等进程退出时则会被杀 if (gzip_pid > 0) { fclose(stdout); waitpid(gzip_pid, NULL, 0); } //重命名.tmp文件到最终位置 if (use_outfile && rename(tmp_path, path)) { fprintf(stderr, "rename(%s, %s): %s/n", tmp_path, path, strerror(errno)); } //通过发送广播告知ActivityManager已完成bugreport操作 if (do_broadcast && use_outfile && do_fb) { run_command(NULL, 5, "/system/bin/am", "broadcast", "--user", "0", "-a", "android.intent.action.BUGREPORT_FINISHED", "--es", "android.intent.extra.BUGREPORT", path, "--es", "android.intent.extra.SCREENSHOT", screenshot_path, "--receiver-permission", "android.permission.DUMP", NULL); } ALOGI("done/n"); return 0; }
整个过程的工作流程:
adb shell dumpstate -h
查看dumpstate命令所支持的参数; 接下来就重点说说 dumpstate()
功能:
该方法负责整个bugreport内容输出的最为核心的功能。
[-> /dumpstate.cpp ]
static void dumpstate() { ... property_get("ro.build.display.id", build, "(unknown)"); property_get("ro.build.fingerprint", fingerprint, "(unknown)"); property_get("ro.build.type", build_type, "(unknown)"); property_get("ro.baseband", radio, "(unknown)"); property_get("ro.bootloader", bootloader, "(unknown)"); property_get("gsm.operator.alpha", network, "(unknown)"); strftime(date, sizeof(date), "%Y-%m-%d %H:%M:%S", localtime(&now)); //开头信息 printf("========================================================/n"); printf("== dumpstate: %s/n", date); printf("========================================================/n"); printf("/n"); printf("Build: %s/n", build); printf("Build fingerprint: '%s'/n", fingerprint); printf("Bootloader: %s/n", bootloader); printf("Radio: %s/n", radio); printf("Network: %s/n", network); printf("Kernel: "); dump_file(NULL, "/proc/version"); printf("Command line: %s/n", strtok(cmdline_buf, "/n")); printf("/n"); //记录系统运行时长和休眠时长 run_command("UPTIME", 10, "uptime", NULL); //输出mmcblk0设备信息 dump_files("UPTIME MMC PERF", mmcblk0, skip_not_stat, dump_stat_from_fd); dump_file("MEMORY INFO", "/proc/meminfo"); run_command("CPU INFO", 10, "top", "-n", "1", "-d", "1", "-m", "30", "-t", NULL); run_command("PROCRANK", 20, "procrank", NULL); dump_file("VIRTUAL MEMORY STATS", "/proc/vmstat"); dump_file("VMALLOC INFO", "/proc/vmallocinfo"); dump_file("SLAB INFO", "/proc/slabinfo"); dump_file("ZONEINFO", "/proc/zoneinfo"); dump_file("PAGETYPEINFO", "/proc/pagetypeinfo"); dump_file("BUDDYINFO", "/proc/buddyinfo"); dump_file("FRAGMENTATION INFO", "/d/extfrag/unusable_index"); dump_file("KERNEL WAKELOCKS", "/proc/wakelocks"); dump_file("KERNEL WAKE SOURCES", "/d/wakeup_sources"); dump_file("KERNEL CPUFREQ", "/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state"); dump_file("KERNEL SYNC", "/d/sync"); run_command("PROCESSES", 10, "ps", "-P", NULL); run_command("PROCESSES AND THREADS", 10, "ps", "-t", "-p", "-P", NULL); run_command("PROCESSES (SELINUX LABELS)", 10, "ps", "-Z", NULL); run_command("LIBRANK", 10, "librank", NULL); //输出kernel log do_dmesg(); //所有已打开文件 run_command("LIST OF OPEN FILES", 10, SU_PATH, "root", "lsof", NULL); //遍历所有进程的show map for_each_pid(do_showmap, "SMAPS OF ALL PROCESSES"); //显示所有线程的blocked位置 for_each_tid(show_wchan, "BLOCKED PROCESS WAIT-CHANNELS"); //SYSTEM LOG timeout = logcat_timeout("main") + logcat_timeout("system") + logcat_timeout("crash"); if (timeout < 20000) { timeout = 20000; } run_command("SYSTEM LOG", timeout / 1000, "logcat", "-v", "threadtime", "-d", "*:v", NULL); //EVENT LOG timeout = logcat_timeout("events"); if (timeout < 20000) { timeout = 20000; } run_command("EVENT LOG", timeout / 1000, "logcat", "-b", "events", "-v", "threadtime", "-d", "*:v", NULL); //RADIO LOG timeout = logcat_timeout("radio"); if (timeout < 20000) { timeout = 20000; } run_command("RADIO LOG", timeout / 1000, "logcat", "-b", "radio", "-v", "threadtime", "-d", "*:v", NULL); //Log统计信息 run_command("LOG STATISTICS", 10, "logcat", "-b", "all", "-S", NULL); //输出当前虚拟机和native进程的vm traces if (dump_traces_path != NULL) { dump_file("VM TRACES JUST NOW", dump_traces_path); } //输出上次发生ANR时vm traces,即路径/data/anr/traces.txt struct stat st; char anr_traces_path[PATH_MAX]; property_get("dalvik.vm.stack-trace-file", anr_traces_path, ""); if (!anr_traces_path[0]) { printf("*** NO VM TRACES FILE DEFINED (dalvik.vm.stack-trace-file)/n/n"); } else { int fd = TEMP_FAILURE_RETRY(open(anr_traces_path, O_RDONLY | O_CLOEXEC | O_NOFOLLOW | O_NONBLOCK)); if (fd < 0) { printf("*** NO ANR VM TRACES FILE (%s): %s/n/n", anr_traces_path, strerror(errno)); } else { dump_file_from_fd("VM TRACES AT LAST ANR", anr_traces_path, fd); } } //输出慢操作的vm traces,例如/data/anr/slow1.txt if (anr_traces_path[0] != 0) { int tail = strlen(anr_traces_path)-1; while (tail > 0 && anr_traces_path[tail] != '/') { tail--; } int i = 0; while (1) { //例如trace文件为/data/anr/slow1.txt sprintf(anr_traces_path+tail+1, "slow%02d.txt", i); if (stat(anr_traces_path, &st)) { break; } dump_file("VM TRACES WHEN SLOW", anr_traces_path); i++; } } //输出tombstone信息,NUM_TOMBSTONES=10,例如/data/tombstones/tombstone_1 int dumped = 0; for (size_t i = 0; i < NUM_TOMBSTONES; i++) { if (tombstone_data[i].fd != -1) { dumped = 1; dump_file_from_fd("TOMBSTONE", tombstone_data[i].name, tombstone_data[i].fd); tombstone_data[i].fd = -1; } } if (!dumped) { printf("*** NO TOMBSTONES to dump in %s/n/n", TOMBSTONE_DIR); } dump_file("NETWORK DEV INFO", "/proc/net/dev"); dump_file("QTAGUID NETWORK INTERFACES INFO", "/proc/net/xt_qtaguid/iface_stat_all"); dump_file("QTAGUID NETWORK INTERFACES INFO (xt)", "/proc/net/xt_qtaguid/iface_stat_fmt"); dump_file("QTAGUID CTRL INFO", "/proc/net/xt_qtaguid/ctrl"); dump_file("QTAGUID STATS INFO", "/proc/net/xt_qtaguid/stats"); //输出上次的kernel log if (!stat(PSTORE_LAST_KMSG, &st)) { //文件为/sys/fs/pstore/console-ramoops dump_file("LAST KMSG", PSTORE_LAST_KMSG); } else { //文件为/proc/last_kmsg dump_file("LAST KMSG", "/proc/last_kmsg"); } //输出上次 logcat,内核必须设置CONFIG_PSTORE_PMSG run_command("LAST LOGCAT", 10, "logcat", "-L", "-v", "threadtime", "-b", "all", "-d", "*:v", NULL); //wifi驱动/固件 以及ip相关信息 run_command("NETWORK INTERFACES", 10, "ip", "link", NULL); run_command("IPv4 ADDRESSES", 10, "ip", "-4", "addr", "show", NULL); run_command("IPv6 ADDRESSES", 10, "ip", "-6", "addr", "show", NULL); run_command("IP RULES", 10, "ip", "rule", "show", NULL); run_command("IP RULES v6", 10, "ip", "-6", "rule", "show", NULL); dump_route_tables(); run_command("ARP CACHE", 10, "ip", "-4", "neigh", "show", NULL); run_command("IPv6 ND CACHE", 10, "ip", "-6", "neigh", "show", NULL); run_command("IPTABLES", 10, SU_PATH, "root", "iptables", "-L", "-nvx", NULL); run_command("IP6TABLES", 10, SU_PATH, "root", "ip6tables", "-L", "-nvx", NULL); run_command("IPTABLE NAT", 10, SU_PATH, "root", "iptables", "-t", "nat", "-L", "-nvx", NULL); run_command("IPTABLE RAW", 10, SU_PATH, "root", "iptables", "-t", "raw", "-L", "-nvx", NULL); run_command("IP6TABLE RAW", 10, SU_PATH, "root", "ip6tables", "-t", "raw", "-L", "-nvx", NULL); run_command("WIFI NETWORKS", 20, SU_PATH, "root", "wpa_cli", "IFNAME=wlan0", "list_networks", NULL); //中断向量表 dump_file("INTERRUPTS (1)", "/proc/interrupts"); run_command("NETWORK DIAGNOSTICS", 10, "dumpsys", "connectivity", "--diag", NULL); //中断向量表(二次输出) dump_file("INTERRUPTS (2)", "/proc/interrupts"); //获取properties属性值 print_properties(); run_command("VOLD DUMP", 10, "vdc", "dump", NULL); run_command("SECURE CONTAINERS", 10, "vdc", "asec", "list", NULL); //可用空间 run_command("FILESYSTEMS & FREE SPACE", 10, "df", NULL); run_command("LAST RADIO LOG", 10, "parse_radio_log", "/proc/last_radio_log", NULL); //背光信息 printf("------ BACKLIGHTS ------/n"); printf("LCD brightness="); dump_file(NULL, "/sys/class/leds/lcd-backlight/brightness"); printf("Button brightness="); dump_file(NULL, "/sys/class/leds/button-backlight/brightness"); printf("Keyboard brightness="); dump_file(NULL, "/sys/class/leds/keyboard-backlight/brightness"); printf("ALS mode="); dump_file(NULL, "/sys/class/leds/lcd-backlight/als"); printf("LCD driver registers:/n"); dump_file(NULL, "/sys/class/leds/lcd-backlight/registers"); printf("/n"); //Binder相关 dump_file("BINDER FAILED TRANSACTION LOG", "/sys/kernel/debug/binder/failed_transaction_log"); dump_file("BINDER TRANSACTION LOG", "/sys/kernel/debug/binder/transaction_log"); dump_file("BINDER TRANSACTIONS", "/sys/kernel/debug/binder/transactions"); dump_file("BINDER STATS", "/sys/kernel/debug/binder/stats"); dump_file("BINDER STATE", "/sys/kernel/debug/binder/state"); printf("========================================================/n"); printf("== Board/n"); printf("========================================================/n"); dumpstate_board(); printf("/n"); //输出framework各种服务的dumpsys信息 printf("========================================================/n"); printf("== Android Framework Services/n"); printf("========================================================/n"); run_command("DUMPSYS", 60, "dumpsys", NULL); //很耗时则timeout=60s printf("========================================================/n"); printf("== Checkins/n"); printf("========================================================/n"); run_command("CHECKIN BATTERYSTATS", 30, "dumpsys", "batterystats", "-c", NULL); run_command("CHECKIN MEMINFO", 30, "dumpsys", "meminfo", "--checkin", NULL); run_command("CHECKIN NETSTATS", 30, "dumpsys", "netstats", "--checkin", NULL); run_command("CHECKIN PROCSTATS", 30, "dumpsys", "procstats", "-c", NULL); run_command("CHECKIN USAGESTATS", 30, "dumpsys", "usagestats", "-c", NULL); run_command("CHECKIN PACKAGE", 30, "dumpsys", "package", "--checkin", NULL); //输出当前 运行中activity/service/provider信息 printf("========================================================/n"); printf("== Running Application Activities/n"); printf("========================================================/n"); run_command("APP ACTIVITIES", 30, "dumpsys", "activity", "all", NULL); printf("========================================================/n"); printf("== Running Application Services/n"); printf("========================================================/n"); run_command("APP SERVICES", 30, "dumpsys", "activity", "service", "all", NULL); printf("========================================================/n"); printf("== Running Application Providers/n"); printf("========================================================/n"); run_command("APP SERVICES", 30, "dumpsys", "activity", "provider", "all", NULL); printf("========================================================/n"); printf("== dumpstate: done/n"); printf("========================================================/n"); }
该方法涉及run_command其他几个方法见下方:
[-> utils.c]
int run_command(const char *title, int timeout_seconds, const char *command, ...) { fflush(stdout); uint64_t start = nanotime(); //通过fork创建子进程 pid_t pid = fork(); if (pid < 0) { printf("*** fork: %s/n", strerror(errno)); return pid; } //子进程执行 if (pid == 0) { const char *args[1024] = {command}; size_t arg; //确保dumpstate结束后能关闭子进程 prctl(PR_SET_PDEATHSIG, SIGKILL); struct sigaction sigact; memset(&sigact, 0, sizeof(sigact)); sigact.sa_handler = SIG_IGN; //忽略SIGPIPE sigaction(SIGPIPE, &sigact, NULL); va_list ap; va_start(ap, command); if (title) printf("------ %s (%s", title, command); for (arg = 1; arg < sizeof(args) / sizeof(args[0]); ++arg) { args[arg] = va_arg(ap, const char *); if (args[arg] == NULL) break; if (title) printf(" %s", args[arg]); } if (title) printf(") ------/n"); fflush(stdout); //执行命令 execvp(command, (char**) args); printf("*** exec(%s): %s/n", command, strerror(errno)); fflush(stdout); _exit(-1); //进程退出 } //父进程执行,主要处理子进程退出 int status; bool ret = waitpid_with_timeout(pid, timeout_seconds, &status); uint64_t elapsed = nanotime() - start; if (!ret) { if (errno == ETIMEDOUT) { printf("*** %s: Timed out after %.3fs (killing pid %d)/n", command, (float) elapsed / NANOS_PER_SEC, pid); } else { printf("*** %s: Error after %.4fs (killing pid %d)/n", command, (float) elapsed / NANOS_PER_SEC, pid); } kill(pid, SIGTERM); if (!waitpid_with_timeout(pid, 5, NULL)) { kill(pid, SIGKILL); if (!waitpid_with_timeout(pid, 5, NULL)) { printf("*** %s: Cannot kill %d even with SIGKILL./n", command, pid); } } return -1; } if (WIFSIGNALED(status)) { printf("*** %s: Killed by signal %d/n", command, WTERMSIG(status)); } else if (WIFEXITED(status) && WEXITSTATUS(status) > 0) { printf("*** %s: Exit code %d/n", command, WEXITSTATUS(status)); } if (title) printf("[%s: %.3fs elapsed]/n/n", command, (float)elapsed / NANOS_PER_SEC); return status; }
功能是fork子进程并等待它执行完成,或者超时退出。当命令 title
不为空时,每次输出结果,都分别以下面作为开头和结尾:
------ <title> (<command>) ------ [<command>: <执行时长> elapsed]
[-> utils.c]
int dump_file(const char *title, const char *path) { //尝试打开文件 int fd = TEMP_FAILURE_RETRY(open(path, O_RDONLY | O_NONBLOCK | O_CLOEXEC)); if (fd < 0) { //无法打开文件时,则输出如下信息 int err = errno; if (title) printf("------ %s (%s) ------/n", title, path); printf("*** %s: %s/n", path, strerror(err)); if (title) printf("/n"); return -1; } //输出文件内容 return _dump_file_from_fd(title, path, fd); }
当可以正确打开文件时,则执行_dump_file_from_fd,输出文件内容
static int _dump_file_from_fd(const char *title, const char *path, int fd) { if (title) printf("------ %s (%s", title, path); if (title) { struct stat st; //文件路径为/proc/或者/sys/ if (memcmp(path, "/proc/", 6) && memcmp(path, "/sys/", 5) && !fstat(fd, &st)) { char stamp[80]; time_t mtime = st.st_mtime; //文件上次修改时间 strftime(stamp, sizeof(stamp), "%Y-%m-%d %H:%M:%S", localtime(&mtime)); printf(": %s", stamp); } printf(") ------/n"); } bool newline = false; fd_set read_set; struct timeval tm; while (1) { FD_ZERO(&read_set); FD_SET(fd, &read_set); //30s无数据可读则超时 tm.tv_sec = 30; tm.tv_usec = 0; uint64_t elapsed = nanotime(); int ret = TEMP_FAILURE_RETRY(select(fd + 1, &read_set, NULL, NULL, &tm)); if (ret == -1) { printf("*** %s: select failed: %s/n", path, strerror(errno)); newline = true; break; } else if (ret == 0) { elapsed = nanotime() - elapsed; printf("*** %s: Timed out after %.3fs/n", path, (float) elapsed / NANOS_PER_SEC); newline = true; break; } else { char buffer[65536]; // 读取数据 ssize_t bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer, sizeof(buffer))); if (bytes_read > 0) { fwrite(buffer, bytes_read, 1, stdout); newline = (buffer[bytes_read-1] == '/n'); } else { if (bytes_read == -1) { printf("*** %s: Failed to read from fd: %s", path, strerror(errno)); newline = true; } break; } } } close(fd); if (!newline) printf("/n"); if (title) printf("/n"); return 0; }
当打不开文件或者出错则输出:
------ <title> (<path>) ------ *** <path>: <err>
当文件路径为/proc/或者/sys/,则输出时间/文件上次修改时间:
------ <title> (<path>: <文件修改时间>) ------
dump_files(“UPTIME MMC PERF”, mmcblk0, skip_not_stat, dump_stat_from_fd);
其中skip_not_stat是指忽略mmcblk0目录下的非stat文件,dump_files该方法遍历输出mmcblk0(即”/sys/block/mmcblk0/”)目录下所有stat文件,具体的输出调用dump_stat_from_fd方法来完成,该方法输出每个分区的读写速度:
static int dump_stat_from_fd(const char *title __unused, const char *path, int fd) { unsigned long fields[11], read_perf, write_perf; bool z; char *cp, *buffer = NULL; size_t i = 0; FILE *fp = fdopen(fd, "rb"); //打开文件 getline(&buffer, &i, fp); fclose(fp); if (!buffer) { return -errno; } i = strlen(buffer); while ((i > 0) && (buffer[i - 1] == '/n')) { buffer[--i] = '/0'; } if (!*buffer) { free(buffer); return 0; } z = true; for (cp = buffer, i = 0; i < (sizeof(fields) / sizeof(fields[0])); ++i) { fields[i] = strtol(cp, &cp, 0); if (fields[i] != 0) { z = false; } } if (z) { /* never accessed */ free(buffer); return 0; } if (!strncmp(path, mmcblk0, sizeof(mmcblk0) - 1)) { path += sizeof(mmcblk0) - 1; } //例如输出/sys/block/mmcblk0/mmcblk0p13/stat内容 printf("%s: %s/n", path, buffer); free(buffer); read_perf = 0; if (fields[3]) { //计算读的性能 read_perf = 512 * fields[2] / fields[3]; } write_perf = 0; if (fields[7]) { //计算写的性能 write_perf = 512 * fields[6] / fields[7]; } printf("%s: read: %luKB/s write: %luKB/s/n", path, read_perf, write_perf); //worst_write_perf默认值为20000kb/s if ((write_perf > 1) && (write_perf < worst_write_perf)) { worst_write_perf = write_perf; } return 0; }
例如:stat文件共有11个数据:
mmcblk0p13/stat: 15 369 100 10 57 7239 5000 250 0 900 2610
则mmcblk0p13/stat的read_perf = 512* 100/10 = 5120KB/s, write_perf= 512* 5000/250 = 10240KB/s
dump虚拟机和native的stack traces,并返回trace文件位置
const char *dump_traces() { const char* result = NULL; char traces_path[PROPERTY_VALUE_MAX] = ""; //traces_path等于/data/anr/traces.txt property_get("dalvik.vm.stack-trace-file", traces_path, ""); if (!traces_path[0]) return NULL; char anr_traces_path[PATH_MAX]; strlcpy(anr_traces_path, traces_path, sizeof(anr_traces_path)); strlcat(anr_traces_path, ".anr", sizeof(anr_traces_path)); //文件重命名 if (rename(traces_path, anr_traces_path) && errno != ENOENT) { fprintf(stderr, "rename(%s, %s): %s/n", traces_path, anr_traces_path, strerror(errno)); return NULL; //没有权限重命令 } char anr_traces_dir[PATH_MAX]; strlcpy(anr_traces_dir, traces_path, sizeof(anr_traces_dir)); char *slash = strrchr(anr_traces_dir, '/'); if (slash != NULL) { *slash = '/0'; //创建文件夹 if (!mkdir(anr_traces_dir, 0775)) { chown(anr_traces_dir, AID_SYSTEM, AID_SYSTEM); chmod(anr_traces_dir, 0775); if (selinux_android_restorecon(anr_traces_dir, 0) == -1) { fprintf(stderr, "restorecon failed for %s: %s/n", anr_traces_dir, strerror(errno)); } } else if (errno != EEXIST) { fprintf(stderr, "mkdir(%s): %s/n", anr_traces_dir, strerror(errno)); return NULL; } } //创建一个新的空文件traces.txt int fd = TEMP_FAILURE_RETRY(open(traces_path, O_CREAT | O_WRONLY | O_TRUNC | O_NOFOLLOW | O_CLOEXEC, 0666)); /* -rw-rw-rw- */ if (fd < 0) { fprintf(stderr, "%s: %s/n", traces_path, strerror(errno)); return NULL; } int chmod_ret = fchmod(fd, 0666); if (chmod_ret < 0) { fprintf(stderr, "fchmod on %s failed: %s/n", traces_path, strerror(errno)); close(fd); return NULL; } // * walk /proc and kill -QUIT all Dalvik processes */ DIR *proc = opendir("/proc"); if (proc == NULL) { fprintf(stderr, "/proc: %s/n", strerror(errno)); goto error_close_fd; } //当进程完成dump操作时,通过inotify来通知 int ifd = inotify_init(); if (ifd < 0) { fprintf(stderr, "inotify_init: %s/n", strerror(errno)); goto error_close_fd; } int wfd = inotify_add_watch(ifd, traces_path, IN_CLOSE_WRITE); if (wfd < 0) { fprintf(stderr, "inotify_add_watch(%s): %s/n", traces_path, strerror(errno)); goto error_close_ifd; } struct dirent *d; int dalvik_found = 0; while ((d = readdir(proc))) { int pid = atoi(d->d_name); if (pid <= 0) continue; char path[PATH_MAX]; char data[PATH_MAX]; snprintf(path, sizeof(path), "/proc/%d/exe", pid); ssize_t len = readlink(path, data, sizeof(data) - 1); if (len <= 0) { continue; } data[len] = '/0'; if (!strncmp(data, "/system/bin/app_process", strlen("/system/bin/app_process"))) { snprintf(path, sizeof(path), "/proc/%d/cmdline", pid); int cfd = TEMP_FAILURE_RETRY(open(path, O_RDONLY | O_CLOEXEC)); len = read(cfd, data, sizeof(data) - 1); close(cfd); if (len <= 0) { continue; } data[len] = '/0'; //略过zygote,并不输出它的栈信息 if (!strncmp(data, "zygote", strlen("zygote"))) { continue; } ++dalvik_found; uint64_t start = nanotime(); if (kill(pid, SIGQUIT)) { fprintf(stderr, "kill(%d, SIGQUIT): %s/n", pid, strerror(errno)); continue; } /* wait for the writable-close notification from inotify */ struct pollfd pfd = { ifd, POLLIN, 0 }; int ret = poll(&pfd, 1, 5000); /* 5s超时*/ if (ret < 0) { fprintf(stderr, "poll: %s/n", strerror(errno)); } else if (ret == 0) { fprintf(stderr, "warning: timed out dumping pid %d/n", pid); } else { struct inotify_event ie; read(ifd, &ie, sizeof(ie)); } if (lseek(fd, 0, SEEK_END) < 0) { fprintf(stderr, "lseek: %s/n", strerror(errno)); } else { dprintf(fd, "[dump dalvik stack %d: %.3fs elapsed]/n", pid, (float)(nanotime() - start) / NANOS_PER_SEC); } } else if (should_dump_native_traces(data)) { //native进程trace if (lseek(fd, 0, SEEK_END) < 0) { fprintf(stderr, "lseek: %s/n", strerror(errno)); } else { static uint16_t timeout_failures = 0; uint64_t start = nanotime(); /* If 3 backtrace dumps fail in a row, consider debuggerd dead. */ if (timeout_failures == 3) { dprintf(fd, "too many stack dump failures, skipping.../n"); } else if (dump_backtrace_to_file_timeout(pid, fd, 20) == -1) { dprintf(fd, "dumping failed, likely due to a timeout/n"); timeout_failures++; } else { timeout_failures = 0; } dprintf(fd, "[dump native stack %d: %.3fs elapsed]/n", pid, (float)(nanotime() - start) / NANOS_PER_SEC); } } } if (dalvik_found == 0) { fprintf(stderr, "Warning: no Dalvik processes found to dump stacks/n"); } static char dump_traces_path[PATH_MAX]; strlcpy(dump_traces_path, traces_path, sizeof(dump_traces_path)); strlcat(dump_traces_path, ".bugreport", sizeof(dump_traces_path)); if (rename(traces_path, dump_traces_path)) { fprintf(stderr, "rename(%s, %s): %s/n", traces_path, dump_traces_path, strerror(errno)); goto error_close_ifd; } result = dump_traces_path; /* replace the saved [ANR] traces.txt file */ rename(anr_traces_path, traces_path); error_close_ifd: close(ifd); error_close_fd: close(fd); return result; }
void do_dmesg() { printf("------ KERNEL LOG (dmesg) ------/n"); //获取kernel buffer的大小 int size = klogctl(KLOG_SIZE_BUFFER, NULL, 0); if (size <= 0) { printf("Unexpected klogctl return value: %d/n/n", size); return; } char *buf = (char *) malloc(size + 1); if (buf == NULL) { printf("memory allocation failed/n/n"); return; } //获取kernel log int retval = klogctl(KLOG_READ_ALL, buf, size); if (retval < 0) { printf("klogctl failure/n/n"); free(buf); return; } buf[retval] = '/0'; printf("%s/n/n", buf); free(buf); return; }
bugreport通过socket与dumpstate服务建立通信,在dumpstate.cpp中的dumpstate()方法完成核心功能,该功能依次输出内容项,如下:
信息量非常大,几乎涵盖整个系统方方面面,下一篇文章将进一步以实例角度来介绍bugreport每一项真正的含义。
framework/native/cmds/bugreport/bugreport.cpp framework/native/cmds/dumpstate/dumpstate.cpp framework/native/cmds/dumpstate/utils.c
,或者点击下方分享给更多的朋友。您的支持将激励我创作更多技术干货!