TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap的实现,但是为了与Java提高篇系列博文保持一致还是叫做TreeMap比较好。通过这篇博文你可以获得如下知识点:
1、红黑树的基本概念。
2、红黑树增加节点、删除节点的实现过程。
3、红黑树左旋转、右旋转的复杂过程。
4、Java 中TreeMap是如何通过put、deleteEntry两个来实现红黑树增加、删除节点的。
我想通过这篇博文你对TreeMap一定有了更深的认识。好了,下面先简单普及红黑树知识。
红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性。同时红黑树更是一颗自平衡的排序二叉树。
我们知道一颗基本的二叉树他们都需要满足一个基本性质–即树中的任何节点的值大于它的左子节点,且小于它的右子节点。按照这个基本性质使得树的检索效率大大提高。我们知道在生成二叉树的过程是非常容易失衡的,最坏的情况就是一边倒(只有右/左子树),这样势必会导致二叉树的检索效率大大降低(O(n)),所以为了维持二叉树的平衡,大牛们提出了各种实现的算法,如: AVL , SBT , 伸展树 , TREAP , 红黑树 等等。
平衡二叉树必须具备如下特性:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。也就是说该二叉树的任何一个等等子节点,其左右子树的高度都相近。
红黑树顾名思义就是节点是红色或者黑色的平衡二叉树,它通过颜色的约束来维持着二叉树的平衡。对于一棵有效的红黑树二叉树而言我们必须增加如下规则:
这些约束强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这棵树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。所以红黑树它是复杂而高效的,其检索效率O(log n )。下图为一颗典型的红黑二叉树。
对于红黑二叉树而言它主要包括三大基本操作:左旋、右旋、着色。
左旋 右旋
(图片来自: http://www.cnblogs.com/yangecnu/p/Introduce-Red-Black-Tree.html )
本节参考文献: http://baike.baidu.com/view/133754.htm?fr=aladdin —–百度百科
注:由于本文主要是讲解Java中TreeMap,所以并没有对红黑树进行非常深入的了解和研究,如果诸位想对其进行更加深入的研究Lz提供几篇较好的博文:
1 、 红黑树系列集锦
2、 红黑树数据结构剖析
3、 红黑树
TreeMap的定义如下:
public class TreeMap<K,V> extends AbstractMap<K,V> implements NavigableMap<K,V>, Cloneable, java.io.Serializable
TreeMap继承AbstractMap,实现NavigableMap、Cloneable、Serializable三个接口。其中AbstractMap表明TreeMap为一个Map即支持key-value的集合, NavigableMap( 更多 )则意味着它支持一系列的导航方法,具备针对给定搜索目标返回最接近匹配项的导航方法 。
TreeMap中同时也包含了如下几个重要的属性:
//比较器,因为TreeMap是有序的,通过comparator接口我们可以对TreeMap的内部排序进行精密的控制 private final Comparator<? super K> comparator; //TreeMap红-黑节点,为TreeMap的内部类 private transient Entry<K,V> root = null; //容器大小 private transient int size = 0; //TreeMap修改次数 private transient int modCount = 0; //红黑树的节点颜色--红色 private static final boolean RED = false; //红黑树的节点颜色--黑色 private static final boolean BLACK = true;
对于叶子节点Entry是TreeMap的内部类,它有几个重要的属性:
//键 K key; //值 V value; //左孩子 Entry<K,V> left = null; //右孩子 Entry<K,V> right = null; //父亲 Entry<K,V> parent; //颜色 boolean color = BLACK;
注:前面只是开胃菜,下面是本篇博文的重中之重,在下面两节我将重点讲解treeMap的put()、delete()方法。通过这两个方法我们会了解红黑树增加、删除节点的核心算法。
在了解TreeMap的put()方法之前,我们先了解红黑树增加节点的算法。
红黑树在新增节点过程中比较复杂,复杂归复杂它同样必须要依据上面提到的五点规范,同时由于规则1、2、3基本都会满足,下面我们主要讨论规则4、5。假设我们这里有一棵最简单的树,我们规定新增的节点为N、它的父节点为P、P的兄弟节点为U、P的父节点为G。
对于新节点的插入有如下三个关键地方:
若新插入的节点N没有父节点,则直接当做根据节点插入即可,同时将颜色设置为黑色。(如图一(1))
这种情况新节点N同样是直接插入,同时颜色为红色,由于根据规则四它会存在两个黑色的叶子节点,值为null。同时由于新增节点N为红色,所以通过它的子节点的路径依然会保存着相同的黑色节点数,同样满足规则5。(如图一(2))
(图一)
对于这种情况若直接插入肯定会出现不平衡现象。怎么处理?P、U节点变黑、G节点变红。这时由于经过节点P、U的路径都必须经过G所以在这些路径上面的黑节点数目还是相同的。但是经过上面的处理,可能G节点的父节点也是红色,这个时候我们需要将G节点当做新增节点递归处理。
对于这种情况我们对新增节点N、P进行一次左旋转。这里所产生的结果其实并没有完成,还不是平衡的(违反了规则四),这是我们需要进行情况5的操作。
这种情况有可能是由于情况四而产生的,也有可能不是。对于这种情况先已P节点为中心进行右旋转,在旋转后产生的树中,节点P是节点N、G的父节点。但是这棵树并不规范,它违反了规则4,所以我们将P、G节点的颜色进行交换,使之其满足规范。开始时所有的路径都需要经过G其他们的黑色节点数一样,但是现在所有的路径改为经过P,且P为整棵树的唯一黑色节点,所以调整后的树同样满足规范5。
上面展示了红黑树新增节点的五种情况,这五种情况涵盖了所有的新增可能,不管这棵红黑树多么复杂,都可以根据这五种情况来进行生成。下面就来分析Java中的TreeMap是如何来实现红黑树的。
在TreeMap的put()的实现方法中主要分为两个步骤,第一:构建排序二叉树,第二:平衡二叉树。
public V put(K key, V value) { //用t表示二叉树的当前节点 Entry<K,V> t = root; //t为null表示一个空树,即TreeMap中没有任何元素,直接插入 if (t == null) { //比较key值,个人觉得这句代码没有任何意义,空树还需要比较、排序? compare(key, key); // type (and possibly null) check //将新的key-value键值对创建为一个Entry节点,并将该节点赋予给root root = new Entry<>(key, value, null); //容器的size = 1,表示TreeMap集合中存在一个元素 size = 1; //修改次数 + 1 modCount++; return null; } int cmp; //cmp表示key排序的返回结果 Entry<K,V> parent; //父节点 // split comparator and comparable paths Comparator<? super K> cpr = comparator; //指定的排序算法 //如果cpr不为空,则采用既定的排序算法进行创建TreeMap集合 if (cpr != null) { do { parent = t; //parent指向上次循环后的t //比较新增节点的key和当前节点key的大小 cmp = cpr.compare(key, t.key); //cmp返回值小于0,表示新增节点的key小于当前节点的key,则以当前节点的左子节点作为新的当前节点 if (cmp < 0) t = t.left; //cmp返回值大于0,表示新增节点的key大于当前节点的key,则以当前节点的右子节点作为新的当前节点 else if (cmp > 0) t = t.right; //cmp返回值等于0,表示两个key值相等,则新值覆盖旧值,并返回新值 else return t.setValue(value); } while (t != null); } //如果cpr为空,则采用默认的排序算法进行创建TreeMap集合 else { if (key == null) //key值为空抛出异常 throw new NullPointerException(); /* 下面处理过程和上面一样 */ Comparable<? super K> k = (Comparable<? super K>) key; do { parent = t; cmp = k.compareTo(t.key); if (cmp < 0) t = t.left; else if (cmp > 0) t = t.right; else return t.setValue(value); } while (t != null); } //将新增节点当做parent的子节点 Entry<K,V> e = new Entry<>(key, value, parent); //如果新增节点的key小于parent的key,则当做左子节点 if (cmp < 0) parent.left = e; //如果新增节点的key大于parent的key,则当做右子节点 else parent.right = e; /* * 上面已经完成了排序二叉树的的构建,将新增节点插入该树中的合适位置 * 下面fixAfterInsertion()方法就是对这棵树进行调整、平衡,具体过程参考上面的五种情况 */ fixAfterInsertion(e); //TreeMap元素数量 + 1 size++; //TreeMap容器修改次数 + 1 modCount++; return null; }
上面代码中do{}代码块是实现排序二叉树的核心算法,通过该算法我们可以确认新增节点在该树的正确位置。找到正确位置后将插入即可,这样做了其实还没有完成,因为我知道TreeMap的底层实现是红黑树,红黑树是一棵平衡排序二叉树,普通的排序二叉树可能会出现失衡的情况,所以下一步就是要进行调整。fixAfterInsertion(e); 调整的过程务必会涉及到红黑树的左旋、右旋、着色三个基本操作。代码如下:
/** * 新增节点后的修复操作 * x 表示新增节点 */ private void fixAfterInsertion(Entry<K,V> x) { x.color = RED; //新增节点的颜色为红色 //循环 直到 x不是根节点,且x的父节点不为红色 while (x != null && x != root && x.parent.color == RED) { //如果X的父节点(P)是其父节点的父节点(G)的左节点 if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { //获取X的叔节点(U) Entry<K,V> y = rightOf(parentOf(parentOf(x))); //如果X的叔节点(U) 为红色(情况三) if (colorOf(y) == RED) { //将X的父节点(P)设置为黑色 setColor(parentOf(x), BLACK); //将X的叔节点(U)设置为黑色 setColor(y, BLACK); //将X的父节点的父节点(G)设置红色 setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } //如果X的叔节点(U为黑色);这里会存在两种情况(情况四、情况五) else { //如果X节点为其父节点(P)的右子树,则进行左旋转(情况四) if (x == rightOf(parentOf(x))) { //将X的父节点作为X x = parentOf(x); //右旋转 rotateLeft(x); } //(情况五) //将X的父节点(P)设置为黑色 setColor(parentOf(x), BLACK); //将X的父节点的父节点(G)设置红色 setColor(parentOf(parentOf(x)), RED); //以X的父节点的父节点(G)为中心右旋转 rotateRight(parentOf(parentOf(x))); } } //如果X的父节点(P)是其父节点的父节点(G)的右节点 else { //获取X的叔节点(U) Entry<K,V> y = leftOf(parentOf(parentOf(x))); //如果X的叔节点(U) 为红色(情况三) if (colorOf(y) == RED) { //将X的父节点(P)设置为黑色 setColor(parentOf(x), BLACK); //将X的叔节点(U)设置为黑色 setColor(y, BLACK); //将X的父节点的父节点(G)设置红色 setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } //如果X的叔节点(U为黑色);这里会存在两种情况(情况四、情况五) else { //如果X节点为其父节点(P)的右子树,则进行左旋转(情况四) if (x == leftOf(parentOf(x))) { //将X的父节点作为X x = parentOf(x); //右旋转 rotateRight(x); } //(情况五) //将X的父节点(P)设置为黑色 setColor(parentOf(x), BLACK); //将X的父节点的父节点(G)设置红色 setColor(parentOf(parentOf(x)), RED); //以X的父节点的父节点(G)为中心右旋转 rotateLeft(parentOf(parentOf(x))); } } } //将根节点G强制设置为黑色 root.color = BLACK; }
对这段代码的研究我们发现,其处理过程完全符合红黑树新增节点的处理过程。所以在看这段代码的过程一定要对红黑树的新增节点过程有了解。在这个代码中还包含几个重要的操作。左旋(rotateLeft())、右旋(rotateRight())、着色(setColor())。
左旋:rotateLeft()
所谓左旋转,就是将新增节点(N)当做其父节点(P),将其父节点P当做新增节点(N)的左子节点。即:G.left —> N ,N.left —> P。
private void rotateLeft(Entry<K,V> p) { if (p != null) { //获取P的右子节点,其实这里就相当于新增节点N(情况四而言) Entry<K,V> r = p.right; //将R的左子树设置为P的右子树 p.right = r.left; //若R的左子树不为空,则将P设置为R左子树的父亲 if (r.left != null) r.left.parent = p; //将P的父亲设置R的父亲 r.parent = p.parent; //如果P的父亲为空,则将R设置为跟节点 if (p.parent == null) root = r; //如果P为其父节点(G)的左子树,则将R设置为P父节点(G)左子树 else if (p.parent.left == p) p.parent.left = r; //否则R设置为P的父节点(G)的右子树 else p.parent.right = r; //将P设置为R的左子树 r.left = p; //将R设置为P的父节点 p.parent = r; } }
右旋:rotateRight()所谓右旋转即,P.right —> G、G.parent —> P。
private void rotateRight(Entry<K,V> p) { if (p != null) { //将L设置为P的左子树 Entry<K,V> l = p.left; //将L的右子树设置为P的左子树 p.left = l.right; //若L的右子树不为空,则将P设置L的右子树的父节点 if (l.right != null) l.right.parent = p; //将P的父节点设置为L的父节点 l.parent = p.parent; //如果P的父节点为空,则将L设置根节点 if (p.parent == null) root = l; //若P为其父节点的右子树,则将L设置为P的父节点的右子树 else if (p.parent.right == p) p.parent.right = l; //否则将L设置为P的父节点的左子树 else p.parent.left = l; //将P设置为L的右子树 l.right = p; //将L设置为P的父节点 p.parent = l; } }
左旋、右旋的示意图如下:
(左旋) (右旋)
(图片来自: http://www.cnblogs.com/yangecnu/p/Introduce-Red-Black-Tree.html )
着色:setColor()
着色就是改变该节点的颜色,在红黑树中,它是依靠节点的颜色来维持平衡的。
private static <K,V> void setColor(Entry<K,V> p, boolean c) { if (p != null) p.color = c; }
针对于红黑树的增加节点而言,删除显得更加复杂,使原本就复杂的红黑树变得更加复杂。同时删除节点和增加节点一样,同样是找到删除的节点,删除之后调整红黑树。但是这里的删除节点并不是直接删除,而是通过走了“弯路”通过一种捷径来删除的: 找到被删除的节点D的子节点C,用C来替代D,不是直接删除D,因为D被C替代了,直接删除C即可。 所以这里就将删除父节点D的事情转变为了删除子节点C的事情,这样处理就将复杂的删除事件简单化了。 子节点C的规则是:右分支最左边,或者 左分支最右边的。
红-黑二叉树删除节点,最大的麻烦是要保持 各分支黑色节点数目相等。 因为是删除,所以不用担心存在颜色冲突问题——插入才会引起颜色冲突。
红黑树删除节点同样会分成几种情况,这里是按照待删除节点有几个儿子的情况来进行分类:
1、没有儿子,即为叶结点。直接把父结点的对应儿子指针设为NULL,删除儿子结点就OK了。
2、只有一个儿子。那么把父结点的相应儿子指针指向儿子的独生子,删除儿子结点也OK了。
3、有两个儿子。这种情况比较复杂,但还是比较简单。上面提到过用子节点C替代代替待删除节点D,然后删除子节点C即可。
下面就论各种删除情况来进行图例讲解,但是在讲解之前请允许我再次啰嗦一句, 请时刻牢记红黑树的5点规定:
诚然,既然删除节点比较复杂,那么在这里我们就约定一下规则:
1、下面要讲解的删除节点一定是实际要删除节点的后继节点(N),如前面提到的C。
2、下面提到的删除节点的树都是如下结构,该结构所选取的节点是待删除节点的右树的最左边子节点。这里我们规定真实删除节点为N、父节点为P、兄弟节点为W兄弟节点的两个子节点为X1、X2。如下图(2.1)。
现在我们就上面提到的三种情况进行分析、处理。
情况一、无子节点(红色节点)
这种情况对该节点直接删除即可,不会影响树的结构。因为该节点为叶子节点它不可能存在子节点—–如子节点为黑,则违反黑节点数原则(规定5),为红,则违反“颜色”原则(规定4)。 如上图(2.2)。
情况二、有一个子节点
这种情况处理也是非常简单的,用子节点替代待删除节点,然后删除子节点即可。如上图(2.3)
这种情况可能会稍微有点儿复杂。它需要找到一个替代待删除节点(N)来替代它,然后删除N即可。它主要分为四种情况。
1、N的兄弟节点W为红色
2、N的兄弟w是黑色的,且w的俩个孩子都是黑色的。
3、N的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。
4、N的兄弟w是黑色的,且w的右孩子时红色的。
W为红色,那么其子节点X1、X2必定全部为黑色,父节点P也为黑色。处理策略是:改变W、P的颜色,然后进行一次左旋转。这样处理就可以使得红黑性质得以继续保持。N的新兄弟new w是旋转之前w的某个孩子,为黑色。这样处理后将情况3.1、转变为3.2、3.3、3.4中的一种。如下:
private void deleteEntry(Entry<K,V> p) { modCount++; //修改次数 +1 size--; //元素个数 -1 /* * 被删除节点的左子树和右子树都不为空,那么就用 p节点的中序后继节点代替 p 节点 * successor(P)方法为寻找P的替代节点。规则是右分支最左边,或者 左分支最右边的节点 * ---------------------(1) */ if (p.left != null && p.right != null) { Entry<K,V> s = successor(p); p.key = s.key; p.value = s.value; p = s; } //replacement为替代节点,如果P的左子树存在那么就用左子树替代,否则用右子树替代 Entry<K,V> replacement = (p.left != null ? p.left : p.right); /* * 删除节点,分为上面提到的三种情况 * -----------------------(2) */ //如果替代节点不为空 if (replacement != null) { replacement.parent = p.parent; /* *replacement来替代P节点 */ //若P没有父节点,则跟节点直接变成replacement if (p.parent == null) root = replacement; //如果P为左节点,则用replacement来替代为左节点 else if (p == p.parent.left) p.parent.left = replacement; //如果P为右节点,则用replacement来替代为右节点 else p.parent.right = replacement; //同时将P节点从这棵树中剔除掉 p.left = p.right = p.parent = null; /* * 若P为红色直接删除,红黑树保持平衡 * 但是若P为黑色,则需要调整红黑树使其保持平衡 */ if (p.color == BLACK) fixAfterDeletion(replacement); } else if (p.parent == null) { //p没有父节点,表示为P根节点,直接删除即可 root = null; } else { //P节点不存在子节点,直接删除即可 if (p.color == BLACK) //如果P节点的颜色为黑色,对红黑树进行调整 fixAfterDeletion(p); //删除P节点 if (p.parent != null) { if (p == p.parent.left) p.parent.left = null; else if (p == p.parent.right) p.parent.right = null; p.parent = null; } } }
(1)除是寻找替代节点replacement,其实现方法为successor()。如下:
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) { if (t == null) return null; /* * 寻找右子树的最左子树 */ else if (t.right != null) { Entry<K,V> p = t.right; while (p.left != null) p = p.left; return p; } /* * 选择左子树的最右子树 */ else { Entry<K,V> p = t.parent; Entry<K,V> ch = t; while (p != null && ch == p.right) { ch = p; p = p.parent; } return p; } }
(2)处是删除该节点过程。它主要分为上面提到的三种情况,它与上面的if…else if… else一一对应 。如下:
1、有两个儿子。这种情况比较复杂,但还是比较简单。上面提到过用子节点C替代代替待删除节点D,然后删除子节点C即可。
2、没有儿子,即为叶结点。直接把父结点的对应儿子指针设为NULL,删除儿子结点就OK了。
3、只有一个儿子。那么把父结点的相应儿子指针指向儿子的独生子,删除儿子结点也OK了。
删除完节点后,就要根据情况来对红黑树进行复杂的调整:fixAfterDeletion()。
private void fixAfterDeletion(Entry<K,V> x) { // 删除节点需要一直迭代,知道 直到 x 不是根节点,且 x 的颜色是黑色 while (x != root && colorOf(x) == BLACK) { if (x == leftOf(parentOf(x))) { //若X节点为左节点 //获取其兄弟节点 Entry<K,V> sib = rightOf(parentOf(x)); /* * 如果兄弟节点为红色----(情况3.1) * 策略:改变W、P的颜色,然后进行一次左旋转 */ if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateLeft(parentOf(x)); sib = rightOf(parentOf(x)); } /* * 若兄弟节点的两个子节点都为黑色----(情况3.2) * 策略:将兄弟节点编程红色 */ if (colorOf(leftOf(sib)) == BLACK && colorOf(rightOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { /* * 如果兄弟节点只有右子树为黑色----(情况3.3) * 策略:将兄弟节点与其左子树进行颜色互换然后进行右转 * 这时情况会转变为3.4 */ if (colorOf(rightOf(sib)) == BLACK) { setColor(leftOf(sib), BLACK); setColor(sib, RED); rotateRight(sib); sib = rightOf(parentOf(x)); } /* *----情况3.4 *策略:交换兄弟节点和父节点的颜色, *同时将兄弟节点右子树设置为黑色,最后左旋转 */ setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(rightOf(sib), BLACK); rotateLeft(parentOf(x)); x = root; } } /** * X节点为右节点与其为做节点处理过程差不多,这里就不在累述了 */ else { Entry<K,V> sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateRight(parentOf(x)); sib = leftOf(parentOf(x)); } if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(leftOf(sib)) == BLACK) { setColor(rightOf(sib), BLACK); setColor(sib, RED); rotateLeft(sib); sib = leftOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(leftOf(sib), BLACK); rotateRight(parentOf(x)); x = root; } } } setColor(x, BLACK); }
这是红黑树在删除节点后,对树的平衡性进行调整的过程,其实现过程与上面四种复杂的情况一一对应,所以在这个源码的时候一定要对着上面提到的四种情况看。
五、写在最后
这篇博文确实是有点儿长,在这里非常感谢各位看客能够静下心来读完,我想你通过读完这篇博文一定收获不小。同时这篇博文很大篇幅都在阐述红黑树的实现过程,对Java 的TreeMap聊的比较少,但是我认为如果理解了红黑树的实现过程,对TreeMap那是手到擒来,小菜一碟。
同时这篇博文我写了四天,看了、参考了大量的博文。同时不免会有些地方存在借鉴之处,在这里对其表示感谢。LZ大二开始学习数据结构,自认为学的不错,现在发现数据结构我还有太多的地方需要学习了,同时也再一次体味了算法的魅力!!!!
参考资料:
1、红黑树数据结构剖析: http://www.cnblogs.com/fanzhidongyzby/p/3187912.html
2、红黑二叉树详解及理论分析 : http://blog.csdn.net/kartorz/article/details/8865997
3、 教你透彻了解红黑树 : blog.csdn.net/v_july_v/article/details/6105630
4、经典算法研究系列:五、红黑树算法的实现与剖析 : http://blog.csdn.net/v_JULY_v/article/details/6109153
5、示例,红黑树插入和删除过程: http://saturnman.blog.163.com/blog/static/557611201097221570/
6、红黑二叉树详解及理论分析 : http://blog.csdn.net/kartorz/article/details/8865997