转载

h2o机器学习算法框架学习总结

H2O

官网: http://www.h2o.ai/

H2o 开源的机器学习框架,支持 glm rf gbm ,深度学习等算法,借助 hadoop spark 计算平台,实现 large scale 机器学习

H2o 机器学习包 h2o机器学习算法框架学习总结

Python 版本 https://pypi.python.org/pypi/h2o/

基于 h2o gbm 参数调整实验

https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/tutorials/gbm/gbmTuning.Rmd

1 下载安装 R h2o

install.packages("h2o")

2 启动 h2o

> library(h2o)

> h2o.init(nthreads = 3)

Connection successful!

R is connected to the H2O cluster:

H2O cluster uptime: 5 hours 9 minutes

H2O cluster version: 3.8.2.6

H2O cluster name: H2O_started_from_R_xxx_phg216

H2O cluster total nodes: 1

H2O cluster total memory: 1.42 GB

H2O cluster total cores: 4

H2O cluster allowed cores: 3

H2O cluster healthy: TRUE

H2O Connection ip: localhost

H2O Connection port: 54321

H2O Connection proxy: NA

R Version: R version 3.2.3 (2015-12-10)

3 导入数据

## 'path' can point to a local file, hdfs, s3, nfs, Hive, directories, etc.

df <- h2o.importFile(path = "http://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv")

dim(df)

head(df)

tail(df)

summary(df,exact_quantiles=TRUE)

## pick a response for the supervised problem

response <- "survived"

## the response variable is an integer, we will turn it into a categorical/factor for binary classification

df[[response]] <- as.factor(df[[response]]) 

## use all other columns (except for the name) as predictors

predictors <- setdiff(names(df), c(response, "name"))

4 数据切分

splits <- h2o.splitFrame(

data = df,

ratios = c(0.6,0.2), ## only need to specify 2 fractions, the 3rd is implied

destination_frames = c("train.hex", "valid.hex", "test.hex"), seed = 1234

)

train <- splits[[1]]

valid <- splits[[2]]

test <- splits[[3]]

5 基础模型

## We only provide the required parameters, everything else is default

gbm <- h2o.gbm(x = predictors, y = response, training_frame = train)

## Show a detailed model summary

gbm

## Get the AUC on the validation set

h2o.auc(h2o.performance(gbm, newdata = valid))

6 模型调参优化

## Depth 10 is usually plenty of depth for most datasets, but you never know
hyper_params = list( max_depth = seq(1,29,2) )
#hyper_params = list( max_depth = c(4,6,8,12,16,20) ) ##faster for larger datasets
grid <- h2o.grid(
  ## hyper parameters
  hyper_params = hyper_params,
  ## full Cartesian hyper-parameter search
  search_criteria = list(strategy = "Cartesian"),
  ## which algorithm to run
  algorithm="gbm",
  ## identifier for the grid, to later retrieve it
  grid_id="depth_grid",
  ## standard model parameters
  x = predictors, 
  y = response, 
  training_frame = train, 
  validation_frame = valid,
  ## more trees is better if the learning rate is small enough 
  ## here, use "more than enough" trees - we have early stopping
  ntrees = 10000,                                                            
  ## smaller learning rate is better
  ## since we have learning_rate_annealing, we can afford to start with a bigger learning rate
  learn_rate = 0.05,                                                         
  ## learning rate annealing: learning_rate shrinks by 1% after every tree 
  ## (use 1.00 to disable, but then lower the learning_rate)
  learn_rate_annealing = 0.99,                                               
  ## sample 80% of rows per tree
  sample_rate = 0.8,                                                       
  ## sample 80% of columns per split
  col_sample_rate = 0.8, 
  ## fix a random number generator seed for reproducibility
  seed = 1234,                                                             
  ## early stopping once the validation AUC doesn't improve by at least 0.01% for 5 consecutive scoring events
  stopping_rounds = 5,
  stopping_tolerance = 1e-4,
  stopping_metric = "AUC", 
  ## score every 10 trees to make early stopping reproducible (it depends on the scoring interval)
  score_tree_interval = 10                                                
## by default, display the grid search results sorted by increasing logloss (since this is a classification task)
grid                                                                       
## sort the grid models by decreasing AUC
sortedGrid <- h2o.getGrid("depth_grid", sort_by="auc", decreasing = TRUE)    
sortedGrid
## find the range of max_depth for the top 5 models
topDepths = sortedGrid@summary_table$max_depth[1:5]                       
minDepth = min(as.numeric(topDepths))
maxDepth = max(as.numeric(topDepths))
hyper_params = list( 
  ## restrict the search to the range of max_depth established above
  max_depth = seq(minDepth,maxDepth,1),                                      
  ## search a large space of row sampling rates per tree
  sample_rate = seq(0.2,1,0.01),                                             
  ## search a large space of column sampling rates per split
  col_sample_rate = seq(0.2,1,0.01),                                         
  ## search a large space of column sampling rates per tree
  col_sample_rate_per_tree = seq(0.2,1,0.01),                                
  ## search a large space of how column sampling per split should change as a function of the depth of the split
  col_sample_rate_change_per_level = seq(0.9,1.1,0.01),                      
  ## search a large space of the number of min rows in a terminal node
  min_rows = 2^seq(0,log2(nrow(train))-1,1),                                 
  ## search a large space of the number of bins for split-finding for continuous and integer columns
  nbins = 2^seq(4,10,1),                                                     
  ## search a large space of the number of bins for split-finding for categorical columns
  nbins_cats = 2^seq(4,12,1),                                                
  ## search a few minimum required relative error improvement thresholds for a split to happen
  min_split_improvement = c(0,1e-8,1e-6,1e-4),                               
  ## try all histogram types (QuantilesGlobal and RoundRobin are good for numeric columns with outliers)
  histogram_type = c("UniformAdaptive","QuantilesGlobal","RoundRobin")       
search_criteria = list(
  ## Random grid search
  strategy = "RandomDiscrete",      
  ## limit the runtime to 60 minutes
  max_runtime_secs = 3600,         
  ## build no more than 100 models
  max_models = 100,                  
  ## random number generator seed to make sampling of parameter combinations reproducible
  seed = 1234,                        
  ## early stopping once the leaderboard of the top 5 models is converged to 0.1% relative difference
  stopping_rounds = 5,                
  stopping_metric = "AUC",
  stopping_tolerance = 1e-3
grid <- h2o.grid(
  ## hyper parameters
  hyper_params = hyper_params,
  ## hyper-parameter search configuration (see above)
  search_criteria = search_criteria,
  ## which algorithm to run
  algorithm = "gbm",
  ## identifier for the grid, to later retrieve it
  grid_id = "final_grid", 
  ## standard model parameters
  x = predictors, 
  y = response, 
  training_frame = train, 
  validation_frame = valid,
  ## more trees is better if the learning rate is small enough
  ## use "more than enough" trees - we have early stopping
  ntrees = 10000,                                                            
  ## smaller learning rate is better
  ## since we have learning_rate_annealing, we can afford to start with a bigger learning rate
  learn_rate = 0.05,                                                         
  ## learning rate annealing: learning_rate shrinks by 1% after every tree 
  ## (use 1.00 to disable, but then lower the learning_rate)
  learn_rate_annealing = 0.99,                                               
  ## early stopping based on timeout (no model should take more than 1 hour - modify as needed)
  max_runtime_secs = 3600,                                                 
  ## early stopping once the validation AUC doesn't improve by at least 0.01% for 5 consecutive scoring events
  stopping_rounds = 5, stopping_tolerance = 1e-4, stopping_metric = "AUC", 
  ## score every 10 trees to make early stopping reproducible (it depends on the scoring interval)
  score_tree_interval = 10,                                                
  ## base random number generator seed for each model (automatically gets incremented internally for each model)
  seed = 1234                                                             
## Sort the grid models by AUC
sortedGrid <- h2o.getGrid("final_grid", sort_by = "auc", decreasing = TRUE)    
sortedGrid

7 模型验证和测试

gbm <- h2o.getModel(sortedGrid@model_ids[[1]])

print(h2o.auc(h2o.performance(gbm, newdata = test)))

交叉验证

for (i in 1:5) {
  gbm <- h2o.getModel(sortedGrid@model_ids[[i]])
  cvgbm <- do.call(h2o.gbm,
        ## update parameters in place
        {
          p <- gbm@parameters
          p$model_id = NULL          ## do not overwrite the original grid model
          p$training_frame = df      ## use the full dataset
          p$validation_frame = NULL  ## no validation frame
          p$nfolds = 5               ## cross-validation
          p
        }
  print(gbm@model_id)
  print(cvgbm@model$cross_validation_metrics_summary[5,]) ## Pick out the "AUC" row
}
gbm <- h2o.getModel(sortedGrid@model_ids[[1]])
preds <- h2o.predict(gbm, test)
head(preds)
gbm@model$validation_metrics@metrics$max_criteria_and_metric_scores

web ui 查看各种结果,模型,评估等等

http://localhost:54321/flow/index.html

h2o机器学习算法框架学习总结

结果保存

h2o.saveModel(gbm, "/tmp/bestModel.csv", force=TRUE)
h2o.exportFile(preds, "/tmp/bestPreds.csv", force=TRUE)

8 模型部署

h2o.download_pojo(gbm)

得到 pojo 代码

通过 java 打分服务,可以将模型部署到实际工业应用场景

1 )下载 pojo 代码  javabean

$ mkdir experiment

$ cd experiment

$ mv ~/Downloads/gbm_pojo_test.java .

$ curl http://localhost:54321/3/h2o-genmodel.jar > h2o-genmodel.jar

2 )编写 打分程序

import java.io.*;

import hex.genmodel.easy.RowData;

import hex.genmodel.easy.EasyPredictModelWrapper;

import hex.genmodel.easy.prediction.*;

public class main {

private static String modelClassName = "gbm_pojo_test";

public static void main(String[] args) throws Exception {

hex.genmodel.GenModel rawModel;

rawModel = (hex.genmodel.GenModel) Class.forName(modelClassName).newInstance();

EasyPredictModelWrapper model = new EasyPredictModelWrapper(rawModel);

RowData row = new RowData();

row.put("Year", "1987");

row.put("Month", "10");

row.put("DayofMonth", "14");

row.put("DayOfWeek", "3");

row.put("CRSDepTime", "730");

row.put("UniqueCarrier", "PS");

row.put("Origin", "SAN");

row.put("Dest", "SFO");

BinomialModelPrediction p = model.predictBinomial(row);

System.out.println("Label (aka prediction) is flight departure delayed: " + p.label);

System.out.print("Class probabilities: ");

for (int i = 0; i < p.classProbabilities.length; i++) {

if (i > 0) {

System.out.print(",");

}

System.out.print(p.classProbabilities[i]);

}

System.out.println("");

}

}

3 )编译,输出打分结果

$ javac -cp h2o-genmodel.jar -J-Xmx2g -J-XX:MaxPermSize=128m gbm_pojo_test.java main.java

$ java -cp .:h2o-genmodel.jar main

The following output displays:

Label (aka prediction) is flight departure delayed: YES

Class probabilities: 0.4790490513429604,0.5209509486570396

9 关闭 h2o 集群

> h2o.shutdown()
Are you sure you want to shutdown the H2O instance running at http://localhost:54321/ (Y/N)? n
[1] TRUE

参考:

[1] http://blog.h2o.ai/

[2] https://github.com/h2oai

总结,相对于其他开源的机器学习算法包,h2o是一个机器学习产品,更加好用适用,从实际问题出发,结合茶品的思维,开发实现的机器学习框架,适合工业应用。

原文  http://blog.sina.com.cn/s/blog_61c463090102whsk.html
正文到此结束
Loading...