转载

学习MapReduce编程场景(一)

欲速则不达

积土成山,风雨兴焉;积水成渊,蛟龙生焉;积善成德,而神明自得,圣心备焉。故不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。蚓无爪牙之利,筋骨之强,上食埃土 ,下饮黄泉 ,用心一也。蟹六跪而二螯,非蛇鳝之穴无可寄托者,用心躁也。

博客园 首页 博问 闪存 新随笔 联系 订阅 学习MapReduce编程场景(一) 管理

随笔-19  评论-2  文章-0  trackbacks-0

学习MapReduce编程场景(一)

最近因为找工作的原因,都有两个周没有写博客了。今天来学习一个MapReduce编程场景。

这是一个处理基站数据的场景。基站数据被抽象成两个文件,分别是以“NET”开头和“POS”开头的文件。一个是记录用户的移动位置,另一个是记录用户的上网数据。任务是从大量的这些数据中提取出用户的移动轨迹,也就是用户到了哪些基站,分别停留了多久。有了这些数据,就可以勾勒出用户的移动轨迹。

ok,下面先看示例数据,然后直接上程序。

下面是POSITION文件,里面分别是imsi | imei | updatetype | loc | time

学习MapReduce编程场景(一)

下面是NETWORK文件。里面分别是imsi | imei | loc | time | url

学习MapReduce编程场景(一)

好了,看到输入数据的示例之后就上程序,然后在程序里面看Mapper与Reducer。总的来说,Mapper输出的的是<imsi|timeflag,position|t>,中间shuffle的过程之后,Reducer的输入为<imsi|timeflag,<position1|t1,position2|t2,position3|t3...>>,最后Reducer的输出为<imsi|timeflag|position|staytime>。其中,staytime是停留时间,position是位置。这里面的key使用了NullWritabe,故输出为空。

package org.leung.myhadoopdev; import java.io.*; import java.util.Date; import java.text.SimpleDateFormat; import java.util.HashMap; import java.util.Iterator; import java.util.Map.Entry; import java.util.TreeMap; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class BaseStationDataPreprocess  {   enum Counter   {    TIMESKIP,    OUTOFTIMESKIP,    LINESKIP,    USERSKIP   } public static class Map extends Mapper<LongWritable,Text,Text,Text>{  String date;  String[] timepoint;  boolean dataSource;  public void setup(Context context) throws IOException {   this.date = context.getConfiguration().get("date");   this.timepoint = context.getConfiguration().get("timepoint").split("-");   FileSplit fs = (FileSplit)context.getInputSplit();//打开输入的文件   String fileName = fs.getPath().getName();//获取文件名(getName是Path的方法,getPath返回的是Path类)。   if( fileName.startsWith("POS")){ //POS文件就是true    dataSource = true;   }   else if( fileName.startsWith("NET")){//NET文件就是false    dataSource = false;   }   else{    throw new IOException("file is not correct!");   }  }  public void map (LongWritable key,Text value,Context context) throws IOException,InterruptedException{   String line = value.toString();   TableLine tableLine = new TableLine();   try{    tableLine.set(line,this.dataSource,this.date,this.timepoint);   }   catch( LineException e )   {    if(e.getFlag()==-1)     context.getCounter(Counter.OUTOFTIMESKIP).increment(1); //接收到时间错误的记录,然后相应的counter加1    else     context.getCounter(Counter.TIMESKIP).increment(1);//格式不对,解析不了,然后相应的counter加1    return;   }   catch(Exception e)   {    context.getCounter(Counter.LINESKIP).increment(1);//读取失败,直接跳过整行    return;   }   context.write(tableLine.outKey(),tableLine.outValue()); } } public static class Reduce extends Reducer<Text,Text,NullWritable,Text>{  private String date;  private SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");  public void setup(Context context){   this.date = context.getConfiguration().get("date");  }  public void reduce(Text key,Iterable<Text> values,Context context) throws IOException,InterruptedException{   String imsi = key.toString().split("//|")[0];//取出用户   String timeFlag = key.toString().split("//|")[1];//取出时间段   TreeMap<Long,String>uploads = new TreeMap<Long,String>();//需要键值对,并关心元素的自然排序时使用   String valueString;   for(Text val:values)   {    valueString = val.toString();    try    {     uploads.put(Long.valueOf(valueString.split("//|")[1]),valueString.split("//|")[0]);//t放在第一个位置,position放在第二个位置    }    catch (NumberFormatException e )    {     context.getCounter(Counter.TIMESKIP).increment(1);     continue;    }   }   try   {    Date tmp = this.formatter.parse( this.date + " "+ timeFlag.split("-")[1]+":00:00" );//组合最后时间出来    uploads.put((tmp.getTime() / 1000L), "OFF");//自己设定的一个最后时间OFF    HashMap<String,Float> locs = getStayTime(uploads);//需要键值对表示,并不关心顺序的    for(Entry<String,Float> entry : locs.entrySet()) //使用entry进行遍历    {     StringBuilder builder = new StringBuilder();     builder.append(imsi).append("|");     builder.append(entry.getKey()).append("|");     builder.append(timeFlag).append("|");     builder.append(entry.getValue());     context.write(NullWritable.get(),new Text(builder.toString()));    }   }catch (Exception e){    context.getCounter(Counter.USERSKIP).increment(1);    return;   }  }   
//下面是计算停留时间,后一个时间减去前一个时间,如果间隔超过60分钟就认定为关机了。 private HashMap<String,Float> getStayTime(TreeMap<Long,String> uploads){ //uploads里面是<t,position> Entry<Long, String> upload , nextUpload ; HashMap<String, Float> locs = new HashMap<String,Float>(); Iterator<Entry<Long,String>> it = uploads.entrySet().iterator(); upload = it.next(); while(it.hasNext()) { nextUpload = it.next(); float diff = (float)(nextUpload.getKey()-upload.getKey()) / 60.0f; if(diff <= 60.0 )//时间间隔过大则代表关机 { if(locs.containsKey(upload.getValue())) locs.put(upload.getValue(),locs.get(upload.getValue())+diff); else locs.put(upload.getValue(),diff); } upload = nextUpload; } return locs; } } public static void main(String args[]) throws Exception{ String input = "hdfs://172.17.150.7:9000/home/base"; String output = "hdfs://172.17.150.7:9000/home/output"; Configuration conf = new Configuration(); conf.addResource("classpath:/hadoop/core-site.xml"); conf.addResource("classpath:/hadoop/hdfs-site.xml"); conf.addResource("classpath:/hadoop/mapred-site.xml"); conf.set("date", "2013-09-12");//设置指定的日期 conf.set("timepoint", "09-17-24");//设置指定的时间段 Job job = new Job(conf,"BaseStationDataPreprocess"); job.setJarByClass(BaseStationDataPreprocess.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job,new Path(input)); FileOutputFormat.setOutputPath(job,new Path(output)); System.exit(job.waitForCompletion(true) ? 0 : 1); } }

好。下面贴出TableLine这个类。这个类主要作用是解析每一行数据,提取需要的部分。

package org.leung.myhadoopdev; import org.apache.hadoop.io.Text; import java.text.ParseException; import java.util.Date; import java.text.SimpleDateFormat; //自定义异常类 class LineException extends Exception{  private static final long serialVersionUID = 8245008693589452584L;   int flag;  public LineException(String msg,int flag){   super(msg);   this.flag = flag;  }  public int getFlag()  {   return flag;  } } //主要分析类 public class TableLine {   private String imsi,position,time,timeFlag;  private Date day;  private SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");  public void set(String line,boolean source,String date,String[] timepoint) throws LineException{       String[] lineSplit = line.split("/t");       if(source)       {        this.imsi = lineSplit[0];        this.position = lineSplit[3];        this.time = lineSplit[4];       }       else       {        this.imsi = lineSplit[0];        this.position = lineSplit[2];        this.time = lineSplit[3];       }       if( !this.time.startsWith(date)) //检查时间是否与输入的相同       {        throw new LineException("",-1);//与输入时间不同,flag是-1       }       try       {        this.day = this.formatter.parse(this.time);//按照formatter的格式来解析输入的time格式       }       catch(ParseException e)       {        throw new LineException("",0);//格式不对,flag是0       }       //下面是判断时间是否在指定的时间段里面       int i = 0, n = timepoint.length;//数组中的元素个数       int hour = Integer.valueOf(this.time.split(" ")[1].split(":")[0]);//yyyy-MM-dd HH:mm:ss 提取HH       while (i < n && Integer.valueOf(timepoint[i] ) <= hour)          i++;       if(i<n)       {        if(i == 0)         this.timeFlag = ("00-" + timepoint[i]);//判断是否在时间段之前,然后输出时间段        else         this.timeFlag = ( timepoint[i-1]+"-"+timepoint[i]);       }       else        throw new LineException("",-1);//不是在指定的时间段里面  }  public Text outKey(){    return new Text (this.imsi + "|"+ this.timeFlag);   }   public Text outValue(){    long t =( day.getTime() / 1000L ); //用一个UNIX的时间,getTime本身就是返回一个unix的时间    return new Text(this.position + "|" + String.valueOf(t));   } } 

OK,下面看看示例数据的结果。可以看到这位同志在9-17点的时间段在0001这个基站附近逗留了70分钟,由在0002这个基站附近逗留了15分钟。

学习MapReduce编程场景(一)

就学习到这里。谢谢大家!本人水平有限,请不吝指正!

posted on 2015-03-15 15:39 Uber 阅读( ... ) 评论( ... )编辑 收藏

刷新评论刷新页面返回顶部

博客园首页 博问 新闻 闪存 程序员招聘 知识库

正文到此结束
Loading...