转载

用线性回归无编码实现文章浏览数预测

继 无编码利用协同算法实现个性化推荐 ,我纯粹使用SQL和配置实现了一个更为复杂一些的,计算文章词汇的tf/idf值,将浏览数作为预测值,使用线性回归算法进行模型训练的示例。帮助大家更好的了解StreamingPro对算法的优秀支持。这篇文章的示例将会跑在Spark 2.0 上了。为了方便大家体验,我已经将Spark 安装包,StreamignPro,以及分词包都准备好,大家下载即可。

准备工作

  • 下载 Spark 2.0,基于Scala 2.10版本

  • 下载 StreamingPro

  • 下载分词包 ansj-seg

我们假设你下载的StreamingPro,ansi-seg包在/tmp目录下。然后将Spark 2.0 解压,进入主目录。

复制如下模板

我已经发布了三个配置文件,分别计算:

  1. 词汇的 idf 值 , 链接

  2. 给每个词汇生成一个唯一的数字标示, 链接

  3. 使用线性回归算法进行训练, 链接

PS : 有道笔记有时候第一次刷不出来,你刷新下就好。

复制保存三个文件:

  1. /tmp/idf.json
  2. /tmp/term-index.json
  3. /tmp/lr-train.json

本机运行

生成idf 文件:

cd  $SPARK_HOME

./bin/spark-submit   --class streaming.core.StreamingApp /
--master local[2] /
--name test /
--jars /tmp/ansj_seg-5.0.0-all-in-one.jar /
/tmp/streamingpro-0.3.3-SNAPSHOT-online-mllib-2.0.0.jar /
-streaming.name test    /
-streaming.platform spark   /
-streaming.job.file.path file:///tmp/idf.json

生成内容会存储成Parquet文件。在/tmp/idf 目录下可以看到具体文件。

接着生成 term index ,文件位于 /tmp/term-with-index,最后进行模型训练,训练好的模型在/tmp/lr-model

后续只要在Spark Streaming中加载,即可完成流式计算。

配置文件简要说明

以lr-train.json为例,大体框架如下:

{
  "lr1": {
    "desc": "LR模型训练Job",
    "strategy": "streaming.core.strategy.SparkStreamingStrategy",
    "compositor": [  ]
  },
  "udf_register": {
    "desc": "通过这个方式可以注册你自己开发的udf函数",
    "strategy": "streaming.core.strategy.SparkStreamingRefStrategy",    
        "compositor": [  ]
  },
  "term_index_ref_table": {
    "desc": "在这里申明表,可以在job中被引用",
    "strategy": "streaming.core.strategy.SparkStreamingRefStrategy",
    "algorithm": [],
    "ref": [],
     "compositor": [  ]
  },
  "term_idf_ref_table": {
    "desc": "在这里申明表,可以在job中被引用",
    "strategy": "streaming.core.strategy.SparkStreamingRefStrategy",    
    "algorithm": [],
    "ref": [],
     "compositor": [  ]
  }
}

这里有一个job,两个关联表,一个UDF函数注册模块。我在配置文件的描述中已经有说明。job 是一个可执行的main函数,你可以这么理解。关联表申明后可以直接在job的sql中使用。UDF函数注册模块则可以使得你很容易扩展SQL的功能。

他们唯一的区别是,Job 的strategy 是 SparkStreamingStrategy ,而其他非Job则是 SparkStreamingRefStrategy

因为一个配置文件里可能有多个Job,每个Job引用的关联表也是不一样,你需要显示指定引用,在Job 的ref中申明即可:

"lr1": {
    "strategy": "streaming.core.strategy.SparkStreamingStrategy",
    "ref": [
      "udf_register",
      "term_index_ref_table",
      "term_idf_ref_table"
    ],
    "compositor": [

这样框架自动为你准备好关联引用,注册UDF函数,然后在lr1 这个job中就可以使用了。比如lr里的parse 函数就是通过udf_register模块提供的。

之后就是定义输入,执行的SQL,以及输出(存储或者模型引擎)。 SQL在案例中你可以看到,可以非常复杂,多个SQL模块之间可以互相作用,通过多条SQL实现一个复杂的逻辑。比如我们这里试下了tf/idf计算等功能。

原文  http://www.jianshu.com/p/d053a21944f5
正文到此结束
Loading...