任何一本讲到图算法的算法书,都会讲到图的表示方法有两种
1 邻接矩阵 ,对于N个点的图,需要N×N的矩阵表示点与点之间是否有边的存在。这种表示法的缺点是浪费空间,尤其是对于N×N的矩阵是稀疏矩阵,即边的数目远远小于N×N的时候,浪费了巨大的存储空间
2 邻接链表,对于任何一个node A,外挂一个邻接链表,如果存在 A->X这样的边,就将X链入链表。 这种表示方法的优点是节省空间,缺点是所有链表都存在的缺点,地址空间的不连续造成缓存命中降低,性能有不如临界矩阵这样的数组。
一直以来,我也是觉得,鱼和熊掌不可兼得,这是无可奈何的事情。直到我看到了一份比较完美的code。他有动态分配的数组来存放邻接节点。一起欣赏下这份代码吧。年前我第一次看到这份代码的时候,激动的我晚上半天睡不着觉。平时自己写的代码,一板一眼,虽说功能无误,总少了那么几分灵气。看了C算法,也算对图的表示方法知道一些,却写不出这么优美的代码。
我以前觉得,自己大量练习联系写代码是学习编程的最好的方法,是最开但是看了这份代码后,觉得,学习前辈高人优秀的代码,是提高自己的一条捷径,对我们这些普通的coder而言,我们看代码的时间是超过写代码的时间的。阅读前辈优秀代码,会更快的提升自己的编程能力。对于初学者尤其是这样,这也是进入一个优秀的开发team的重要性,能更快的成长。
欣赏代码Yale大学前辈的代码吧。
#ifndef __GRAPH_H__ #define __GRAPH_H__ typedef struct graph *Graph; Graph graph_create(int n); void graph_destroy(Graph); void graph_add_edge(Graph, int source, int sink); int graph_vertex_count(Graph); int graph_edge_count(Graph); int graph_out_degree(Graph, int source); int graph_has_edge(Graph, int source, int sink); void graph_foreach(Graph g, int source, void (*f)(Graph g, int source, int sink, void *data), void *data); #endif
#include <stdlib.h> #include <assert.h> #include "graph.h" /* basic directed graph type */ /* the implementation uses adjacency lists * represented as variable-length arrays */ /* these arrays may or may not be sorted: if one gets long enough * and you call graph_has_edge on its source, it will be */ struct graph { int n; /* number of vertices */ int m; /* number of edges */ struct successors { int d; /* number of successors */ int len; /* number of slots in array */ char is_sorted; /* true if list is already sorted */ int list[1]; /* actual list of successors */ } *alist[1]; }; /* create a new graph with n vertices labeled 0..n-1 and no edges */ Graph graph_create(int n) { Graph g; int i; g = malloc(sizeof(struct graph) + sizeof(struct successors *) * (n-1)); assert(g); g->n = n; g->m = 0; for(i = 0; i < n; i++) { g->alist[i] = malloc(sizeof(struct successors)); assert(g->alist[i]); g->alist[i]->d = 0; g->alist[i]->len = 1; g->alist[i]->is_sorted= 1; } return g; } /* free all space used by graph */ void graph_destroy(Graph g) { int i; for(i = 0; i < g->n; i++) free(g->alist[i]); free(g); } /* add an edge to an existing graph */ void graph_add_edge(Graph g, int u, int v) { assert(u >= 0); assert(u < g->n); assert(v >= 0); assert(v < g->n); /* do we need to grow the list? */ while(g->alist[u]->d >= g->alist[u]->len) { g->alist[u]->len *= 2; g->alist[u] = realloc(g->alist[u], sizeof(struct successors) + sizeof(int) * (g->alist[u]->len - 1)); } /* now add the new sink */ g->alist[u]->list[g->alist[u]->d++] = v; g->alist[u]->is_sorted = 0; /* bump edge count */ g->m++; } /* return the number of vertices in the graph */ int graph_vertex_count(Graph g) { return g->n; } /* return the number of vertices in the graph */ int graph_edge_count(Graph g) { return g->m; } /* return the out-degree of a vertex */ int graph_out_degree(Graph g, int source) { assert(source >= 0); assert(source < g->n); return g->alist[source]->d; } /* when we are willing to call bsearch */ #define BSEARCH_THRESHOLD (10) static int intcmp(const void *a, const void *b) { return *((const int *) a) - *((const int *) b); } /* return 1 if edge (source, sink) exists), 0 otherwise */ int graph_has_edge(Graph g, int source, int sink) { int i; assert(source >= 0); assert(source < g->n); assert(sink >= 0); assert(sink < g->n); if(graph_out_degree(g, source) >= BSEARCH_THRESHOLD) { /* make sure it is sorted */ if(! g->alist[source]->is_sorted) { qsort(g->alist[source]->list, g->alist[source]->d, sizeof(int), intcmp); } /* call bsearch to do binary search for us */ return bsearch(&sink, g->alist[source]->list, g->alist[source]->d, sizeof(int), intcmp) != 0; } else { /* just do a simple linear search */ /* we could call lfind for this, but why bother? */ for(i = 0; i < g->alist[source]->d; i++) { if(g->alist[source]->list[i] == sink) return 1; } /* else */ return 0; } } /* invoke f on all edges (u,v) with source u */ /* supplying data as final parameter to f */ void graph_foreach(Graph g, int source, void (*f)(Graph g, int source, int sink, void *data), void *data) { int i; assert(source >= 0); assert(source < g->n); for(i = 0; i < g->alist[source]->d; i++) { f(g, source, g->alist[source]->list[i], data); } }
这是一份 PineWiki 网站里面提供的一份图的表示的代码,实现的很优美吧?动态分配数组,长度可以扩展,既不浪费空间,有不会带来性能损失。
除此外,graph_foreach这种思想也很不错啊。最近学习了一段时间的Lisp,这种传递函数作用到每一个元素上的方法,相当于Lisp中的mapcar,让人不仅拍案叫绝,很容易就能扩展出很好的功能。(当然也不是完全没瑕疵,比如realloc没有判断失败的情景,白璧微瑕)
既然是图的表示,我们当然很希望能够看到可视化的图。我看Land of Lisp一书中,学到了Linux下的neato 命令。 Linux下有工具帮助生成图的图片,可以满足我们可视化的需求。
先看下测试代码。
#include <stdio.h> #include <assert.h> #include "graph.h" #define TEST_SIZE (6) static void match_sink(Graph g, int source, int sink, void *data) { assert(data && sink == *((int *) data)); } static int node2dot(Graph g) { assert(g != NULL); return 0; } static void print_edge2dot(Graph g,int source, int sink, void *data) { fprintf(stdout,"%d->%d;n",source,sink); } static int edge2dot(Graph g) { assert( NULL); int idx = 0; int node_cnt = graph_vertex_count(g); for(idx = 0;idx<node_cnt; idx++) { graph_foreach(g,idx,print_edge2dot,NULL); } return 0; } int graph2dot(Graph g) { fprintf(stdout,"digraph{"); node2dot(g); edge2dot(g); fprintf(stdout,"}n"); return 0; } int main(int argc, char **argv) { Graph g; int i; int j; g = graph_create(TEST_SIZE); assert(graph_vertex_count(g) == TEST_SIZE); /* check it's empty */ for(i = 0; i < TEST_SIZE; i++) { for(j = 0; j < TEST_SIZE; j++) { assert(graph_has_edge(g, i, j) == 0); } } /* check it's empty again */ for(i = 0; i < TEST_SIZE; i++) { assert(graph_out_degree(g, i) == 0); graph_foreach(g, i, match_sink, 0); } /* check edge count */ assert(graph_edge_count(g) == 0); for(i = 0; i < TEST_SIZE; i++) { for(j = 0; j < TEST_SIZE; j++) { if(i < j) graph_add_edge(g, i, j); } } for(i = 0; i < TEST_SIZE; i++) { for(j = 0; j < TEST_SIZE; j++) { assert(graph_has_edge(g, i, j) == (i < j)); } } assert(graph_edge_count(g) == (TEST_SIZE*(TEST_SIZE-1)/2)); graph2dot(g); /* free it * */ graph_destroy(g); return 0; }
我们这个测试程序基本测试了graph的API,同时利用graph_foreach函数的高效扩展性,输出了dot文件格式的文件我们看下执行结果。
root@manu:~/code/c/self/graph_2# gcc -o test generate_graph.c graph.c root@manu:~/code/c/self/graph_2# ./test >test.dot
在我的Ubuntu下面用XDot可以看到test.dot已经是个图形文件了。图形如下:
当然了,我们也可以用 dot命令绘制出PNG格式的图片来:
root@manu:~/code/c/self/graph_2# dot -T png -o graph_test.png test.dot
我们可以看到在当前目录下产生了一个文件名为graph_test.png的PNG格式的图片。打开看下和上面的图是一致的。我就不贴图了。
对dot感兴趣的筒子,可以继续阅读 『dot 学习笔记』二. 记录 Shell 的变迁
参考文献:
1 Land of Lisp
2 PineWiki
3 算法:C语言实现。