作者:刘帝伟
原文: 机器学习算法比较
本文主要回顾下几个常用算法的适应场景及其优缺点!(提示:部分内容摘自网络)。
机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。但是如果你只是在寻找一个“足够好”的算法来解决你的问题,或者这里有些技巧可以参考,下面来分析下各个算法的优缺点,基于算法的优缺点,更易于我们去选择它。
在统计学中,一个模型好坏,是根据偏差和方差来衡量的,所以我们先来普及一下偏差(bias)和方差(variance):
$$
Bias [/hat{f}(x)] = E [/hat{f}(x)] – f(x) /
/tag{1} /label{1}
$$
$$
Var [/hat{f}(x)] = E [(/hat{f}(x) – E[/hat{f}(x)])^2]
/tag{2} /label{2}
$$
模型的真实误差是两者之和,如公式/eqref{3}:
$$
E /left [(y – /hat{f}(x))^2 /right ] = Bias [/hat{f}(x)]^2 Var[/hat{f}(x)] /sigma^2
/tag{3} /label{3}
$$
通常情况下,如果是小训练集,高偏差/低方差的分类器(例如,朴素贝叶斯NB)要比低偏差/高方差大分类的优势大(例如,KNN),因为后者会发生过拟合(overfiting)。然而,随着你训练集的增长,模型对于原数据的预测能力就越好,偏差就会降低,此时低偏差/高方差的分类器就会渐渐的表现其优势(因为它们有较低的渐近误差),而高偏差分类器这时已经不足以提供准确的模型了。
当然,你也可以认为这是生成模型(如NB)与判别模型(如KNN)的一个区别。
为什么说朴素贝叶斯是高偏差低方差?
以下内容引自知乎:
首先,假设你知道训练集和测试集的关系。简单来讲是我们要在训练集上学习一个模型,然后拿到测试集去用,效果好不好要根据测试集的错误率来衡量。但很多时候,我们只能假设测试集和训练集的是符合同一个数据分布的,但却拿不到真正的测试数据。这时候怎么在只看到训练错误率的情况下,去衡量测试错误率呢?
由于训练样本很少(至少不足够多),所以通过训练集得到的模型,总不是真正正确的。(就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。而且,实际中,训练样本往往还有一定的噪音误差,所以如果太追求在训练集上的完美而采用一个很复杂的模型,会使得模型把训练集里面的误差都当成了真实的数据分布特征,从而得到错误的数据分布估计。这样的话,到了真正的测试集上就错的一塌糊涂了(这种现象叫过拟合)。但是也不能用太简单的模型,否则在数据分布比较复杂的时候,模型就不足以刻画数据分布了(体现为连在训练集上的错误率都很高,这种现象较欠拟合)。过拟合表明采用的模型比真实的数据分布更复杂,而欠拟合表示采用的模型比真实的数据分布要简单。
在统计学习框架下,大家刻画模型复杂度的时候,有这么个观点,认为Error = Bias Variance。这里的Error大概可以理解为模型的预测错误率,是有两部分组成的,一部分是由于模型太简单而带来的估计不准确的部分(Bias),另一部分是由于模型太复杂而带来的更大的变化空间和不确定性(Variance)。
所以,这样就容易分析朴素贝叶斯了。它简单的假设了各个数据之间是无关的,是一个被 严重简化了的模型 。所以,对于这样一个简单模型,大部分场合都会Bias部分大于Variance部分,也就是说高偏差而低方差。
在实际中,为了让Error尽量小,我们在选择模型的时候需要平衡Bias和Variance所占的比例,也就是平衡over-fitting和under-fitting。
偏差、方差、模型复杂度三者之间的关系使用下图表示会更容易理解:
当模型复杂度上升的时候,偏差会逐渐变小,而方差会逐渐变大。
朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要还是在于是否需要求联合分布),比较简单,你只需做一堆计数即可。如果注有条件独立性假设(一个比较严格的条件),朴素贝叶斯分类器的收敛速度将快于判别模型,比如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中R来讲,就是特征冗余。引用一个比较经典的例子,比如,虽然你喜欢Brad Pitt和Tom Cruise的电影,但是它不能学习出你不喜欢他们在一起演的电影。
逻辑回归属于判别式模型,同时伴有很多模型正则化的方法(L0, L1,L2,etc),而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树、SVM相比,你还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法-online gradient descent)。如果你需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者你希望以后将更多的训练数据快速整合到模型中去,那么使用它吧。
Sigmoid函数:表达式为公式/eqref{4}.
$$
f(x) = /frac{1}{1 e^{-x}}
/tag{4}/label{4}
$$
线性回归是用于回归的,它不像Logistic回归那样用于分类,其基本思想是用 梯度下降法 对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为:
$$
/hat{w}=(X^{T}X)^{-1}X^Ty
/tag{5}/label{5}
$$
而在LWLR(局部加权线性回归)中,参数的计算表达式为:
$$
/hat{w}=(X^{T}WX)^{-1}X^TWy
/tag{6}/label{6}
$$
由此可见LWLR与LR不同,LWLR是一个非参数模型,因为每次进行回归计算都要遍历训练样本至少一次。
优点: 实现简单,计算简单;
缺点: 不能拟合非线性数据.
KNN即最近邻算法,其主要过程为:
1. 计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等); 2. 对上面所有的距离值进行排序(升序); 3. 选前k个最小距离的样本; 4. 根据这k个样本的标签进行投票,得到最后的分类类别;
如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。近邻算法具有较强的一致性结果,随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。
决策树的一大优势就是易于解释。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况)。它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted tree)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一丁点),它训练快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以在以前都一直很受欢迎。
决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。
信息熵的计算公式如下:
$$
H=-/sum^{n}_{i=1}p(x_i)log_2p(x_i)
/tag{7}/label{7}
$$
其中的n代表有n个分类类别(比如假设是二类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。
现在选中一个属性$x_i$用来进行分枝,此时分枝规则是:如果$x_i=v$的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’ =p1 H1 p2 H2,则此时的信息增益ΔH = H – H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。
Adaboost是一种加和模型,每个模型都是基于上一次模型的错误率来建立的,过分关注分错的样本,而对正确分类的样本减少关注度,逐次迭代之后,可以得到一个相对较好的模型。该算法是一种典型的boosting算法,其加和理论的优势可以使用Hoeffding不等式得以解释。有兴趣的同学可以阅读下笔者后面写的这篇文章 Adaboost – 新的角度理解权值更新策略 .下面总结下它的优缺点。
关于随机森林和GBDT等组合算法,参考这篇文章: 机器学习-组合算法总结
缺点:对outlier比较敏感
支持向量机,一个经久不衰的算法,高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。
对于核的选择也是有技巧的(libsvm中自带了四种核函数:线性核、多项式核、RBF以及sigmoid核):
对于第一种情况,也可以先对数据进行降维,然后使用非线性核,这也是一种方法。
之前笔者写过一篇关于K-Means聚类的文章,参见 机器学习算法-K-means聚类 。关于K-Means的推导,里面可是有大学问的,蕴含着强大的EM思想。
之前笔者翻译过一些国外的文章,其中有一篇文章中给出了一个简单的算法选择技巧:
通常情况下:【GBDT>=SVM>=RF>=Adaboost>=Other…】,现在深度学习很热门,很多领域都用到,它是以神经网络为基础的,目前笔者自己也在学习,只是理论知识不扎实,理解的不够深入,这里就不做介绍了,希望以后可以写一片抛砖引玉的文章。
算法固然重要, 但好的数据却要优于好的算法 ,设计优良特征是大有裨益的。假如你有一个超大数据集,那么无论你使用哪种算法可能对分类性能都没太大影响(此时就可以根据速度和易用性来进行抉择)。
[1] https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
[2] http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/
[3] http://www.csuldw.com/2016/02/26/2016-02-26-choosing-a-machine-learning-classifier/
微信扫一扫,关注我爱机器学习公众号
微博:我爱机器学习