GANs是Generative Adversarial Networks的简写,中文翻译为生成对抗网络,它最早出现在2014年Goodfellow发表的论文中: Generative Adversarial Networks 。GANs是目前深度学习领域最火的网络模型,苹果最近发布的第一篇论文就是关于GANs的:SimGAN。
简单来说,GANs会学着生成和训练数据相似的数据,一个最典型的应用是生成图像。假设你有一堆猫的图片,你使用这些图片训练GANs,之后它会生成和训练数据相类似的猫的图片(它习的了猫的特征)。
GANs用到机器学习的两种模型: G enerative生成模型和 D iscriminative判别模型。
GANs类比:假设 G 是大伪艺术家,以制作古董赝品为生,G的终极目标是以假乱真。但是呢,又有一些人以鉴宝为生( D )。开始你给D展示了一些古董真品,告诉D这是正品。然后G开始制作赝品,想骗过D,让他分辨不出真假。随着D看到越来越多的真品,G要骗过D就越来越难,当然,G也不是吃闲饭的,它会加倍努力的试图骗过D。随着这种对抗的持续,不仅D鉴宝的本领提高了,G也会越来越擅长制作赝品。这就是名字中生成-对抗的意思。
判别模型可以判断数据属于哪一类,例如< TensorFlow练习23: 恶作剧 >训练的CNN模型可以判断一张脸是不是我的脸。相反,生成模型不用预先知道分类,它可生成最符合训练样本分布的新样本。例如 高斯混合模型 ,经过训练,它生成的随机数据符合训练样本的分布。
使用的数据集: Large-scale CelebFaces Attributes (CelebA) Dataset ,这个数据集包含20万明星脸,可用来做人脸检测、人脸特征识别等等任务。
下载地址: Google Drive 或 Baidu云 。
代码:
# -*- coding: utf-8 -*- """ Energy Based Generative Adversarial Networks (EBGAN): https://arxiv.org/pdf/1609.03126v2.pdf <blog.topspeedsnail.com> 由于我把Python升级到了3.6破坏了开发环境, 暂时先使用Python 2.7 """ import os import random import numpyas np import tensorflowas tf import cv2 import scipy.miscas misc CELEBA_DATE_DIR= 'img_align_celeba' train_images = [] for image_filenamein os.listdir(CELEBA_DATE_DIR): if image_filename.endswith('.jpg'): train_images.append(os.path.join(CELEBA_DATE_DIR, image_filename)) random.shuffle(train_images) batch_size = 64 num_batch = len(train_images) // batch_size # 图像大小和channel IMAGE_SIZE = 64 IMAGE_CHANNEL = 3 def get_next_batch(pointer): image_batch = [] images = train_images[pointer*batch_size:(pointer+1)*batch_size] for imgin images: image = cv2.imread(img) image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE)) image = image.astype('float32') / 127.5 - 1 image_batch.append(image) return image_batch # noise z_dim = 100 noise = tf.placeholder(tf.float32, [None, z_dim], name='noise') X = tf.placeholder(tf.float32, [batch_size, IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL], name='X') # 是否在训练阶段 train_phase = tf.placeholder(tf.bool) # http://stackoverflow.com/a/34634291/2267819 def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5): with tf.variable_scope(scope): #beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True) #gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True) batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments') ema = tf.train.ExponentialMovingAverage(decay=decay) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps) return normed # 重用变量出了点问题, 先用dict generator_variables_dict = { "W_1": tf.Variable(tf.truncated_normal([z_dim, 2 * IMAGE_SIZE * IMAGE_SIZE], stddev=0.02), name='Generator/W_1'), "b_1": tf.Variable(tf.constant(0.0, shape=[2 * IMAGE_SIZE * IMAGE_SIZE]), name='Generator/b_1'), 'beta_1': tf.Variable(tf.constant(0.0, shape=[512]), name='Generator/beta_1'), 'gamma_1': tf.Variable(tf.random_normal(shape=[512], mean=1.0, stddev=0.02), name='Generator/gamma_1'), "W_2": tf.Variable(tf.truncated_normal([5, 5, 256, 512], stddev=0.02), name='Generator/W_2'), "b_2": tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/b_2'), 'beta_2': tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/beta_2'), 'gamma_2': tf.Variable(tf.random_normal(shape=[256], mean=1.0, stddev=0.02), name='Generator/gamma_2'), "W_3": tf.Variable(tf.truncated_normal([5, 5, 128, 256], stddev=0.02), name='Generator/W_3'), "b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/b_3'), 'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/beta_3'), 'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Generator/gamma_3'), "W_4": tf.Variable(tf.truncated_normal([5, 5, 64, 128], stddev=0.02), name='Generator/W_4'), "b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/b_4'), 'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/beta_4'), 'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Generator/gamma_4'), "W_5": tf.Variable(tf.truncated_normal([5, 5, IMAGE_CHANNEL, 64], stddev=0.02), name='Generator/W_5'), "b_5": tf.Variable(tf.constant(0.0, shape=[IMAGE_CHANNEL]), name='Generator/b_5') } # Generator def generator(noise): with tf.variable_scope("Generator"): out_1 = tf.matmul(noise, generator_variables_dict["W_1"]) + generator_variables_dict['b_1'] out_1 = tf.reshape(out_1, [-1, IMAGE_SIZE//16, IMAGE_SIZE//16, 512]) out_1 = batch_norm(out_1, generator_variables_dict["beta_1"], generator_variables_dict["gamma_1"], train_phase, scope='bn_1') out_1 = tf.nn.relu(out_1, name='relu_1') out_2 = tf.nn.conv2d_transpose(out_1, generator_variables_dict['W_2'], output_shape=tf.pack([tf.shape(out_1)[0], IMAGE_SIZE//8, IMAGE_SIZE//8, 256]), strides=[1, 2, 2, 1], padding='SAME') out_2 = tf.nn.bias_add(out_2, generator_variables_dict['b_2']) out_2 = batch_norm(out_2, generator_variables_dict["beta_2"], generator_variables_dict["gamma_2"], train_phase, scope='bn_2') out_2 = tf.nn.relu(out_2, name='relu_2') out_3 = tf.nn.conv2d_transpose(out_2, generator_variables_dict['W_3'], output_shape=tf.pack([tf.shape(out_2)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 128]), strides=[1, 2, 2, 1], padding='SAME') out_3 = tf.nn.bias_add(out_3, generator_variables_dict['b_3']) out_3 = batch_norm(out_3, generator_variables_dict["beta_3"], generator_variables_dict["gamma_3"], train_phase, scope='bn_3') out_3 = tf.nn.relu(out_3, name='relu_3') out_4 = tf.nn.conv2d_transpose(out_3, generator_variables_dict['W_4'], output_shape=tf.pack([tf.shape(out_3)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 64]), strides=[1, 2, 2, 1], padding='SAME') out_4 = tf.nn.bias_add(out_4, generator_variables_dict['b_4']) out_4 = batch_norm(out_4, generator_variables_dict["beta_4"], generator_variables_dict["gamma_4"], train_phase, scope='bn_4') out_4 = tf.nn.relu(out_4, name='relu_4') out_5 = tf.nn.conv2d_transpose(out_4, generator_variables_dict['W_5'], output_shape=tf.pack([tf.shape(out_4)[0], IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL]), strides=[1, 2, 2, 1], padding='SAME') out_5 = tf.nn.bias_add(out_5, generator_variables_dict['b_5']) out_5 = tf.nn.tanh(out_5, name='tanh_5') return out_5 discriminator_variables_dict = { "W_1": tf.Variable(tf.truncated_normal([4, 4, IMAGE_CHANNEL, 32], stddev=0.002), name='Discriminator/W_1'), "b_1": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_1'), 'beta_1': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_1'), 'gamma_1': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_1'), "W_2": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_2'), "b_2": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_2'), 'beta_2': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_2'), 'gamma_2': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_2'), "W_3": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_3'), "b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/b_3'), 'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/beta_3'), 'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Discriminator/gamma_3'), "W_4": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_4'), "b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_4'), 'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_4'), 'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_4'), "W_5": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_5'), "b_5": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_5'), 'beta_5': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_5'), 'gamma_5': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_5'), "W_6": tf.Variable(tf.truncated_normal([4, 4, 3, 32], stddev=0.002), name='Discriminator/W_6'), "b_6": tf.Variable(tf.constant(0.0, shape=[3]), name='Discriminator/b_6') } # Discriminator def discriminator(input_images): with tf.variable_scope("Discriminator"): # Encoder out_1 = tf.nn.conv2d(input_images, discriminator_variables_dict['W_1'], strides=[1, 2, 2, 1], padding='SAME') out_1 = tf.nn.bias_add(out_1, discriminator_variables_dict['b_1']) out_1 = batch_norm(out_1, discriminator_variables_dict['beta_1'], discriminator_variables_dict['gamma_1'], train_phase, scope='bn_1') out_1 = tf.maximum(0.2 * out_1, out_1, 'leaky_relu_1') out_2 = tf.nn.conv2d(out_1, discriminator_variables_dict['W_2'], strides=[1, 2, 2, 1], padding='SAME') out_2 = tf.nn.bias_add(out_2, discriminator_variables_dict['b_2']) out_2 = batch_norm(out_2, discriminator_variables_dict['beta_2'], discriminator_variables_dict['gamma_2'], train_phase, scope='bn_2') out_2 = tf.maximum(0.2 * out_2, out_2, 'leaky_relu_2') out_3 = tf.nn.conv2d(out_2, discriminator_variables_dict['W_3'], strides=[1, 2, 2, 1], padding='SAME') out_3 = tf.nn.bias_add(out_3, discriminator_variables_dict['b_3']) out_3 = batch_norm(out_3, discriminator_variables_dict['beta_3'], discriminator_variables_dict['gamma_3'], train_phase, scope='bn_3') out_3 = tf.maximum(0.2 * out_3, out_3, 'leaky_relu_3') encode = tf.reshape(out_3, [-1, 2*IMAGE_SIZE*IMAGE_SIZE]) # Decoder out_3 = tf.reshape(encode, [-1, IMAGE_SIZE//8, IMAGE_SIZE//8, 128]) out_4 = tf.nn.conv2d_transpose(out_3, discriminator_variables_dict['W_4'], output_shape=tf.pack([tf.shape(out_3)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 64]), strides=[1, 2, 2, 1], padding='SAME') out_4 = tf.nn.bias_add(out_4, discriminator_variables_dict['b_4']) out_4 = batch_norm(out_4, discriminator_variables_dict['beta_4'], discriminator_variables_dict['gamma_4'], train_phase, scope='bn_4') out_4 = tf.maximum(0.2 * out_4, out_4, 'leaky_relu_4') out_5 = tf.nn.conv2d_transpose(out_4, discriminator_variables_dict['W_5'], output_shape=tf.pack([tf.shape(out_4)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 32]), strides=[1, 2, 2, 1], padding='SAME') out_5 = tf.nn.bias_add(out_5, discriminator_variables_dict['b_5']) out_5 = batch_norm(out_5, discriminator_variables_dict['beta_5'], discriminator_variables_dict['gamma_5'], train_phase, scope='bn_5') out_5 = tf.maximum(0.2 * out_5, out_5, 'leaky_relu_5') out_6 = tf.nn.conv2d_transpose(out_5, discriminator_variables_dict['W_6'], output_shape=tf.pack([tf.shape(out_5)[0], IMAGE_SIZE, IMAGE_SIZE, 3]), strides=[1, 2, 2, 1], padding='SAME') out_6 = tf.nn.bias_add(out_6, discriminator_variables_dict['b_6']) decoded = tf.nn.tanh(out_6, name="tanh_6") return encode, decoded # mean squared errors _, real_decoded = discriminator(X) real_loss = tf.sqrt(2 * tf.nn.l2_loss(real_decoded - X)) / batch_size fake_image = generator(noise) _, fake_decoded = discriminator(fake_image) fake_loss = tf.sqrt(2 * tf.nn.l2_loss(fake_decoded - fake_image)) / batch_size # loss # D_loss = real_loss + tf.maximum(1 - fake_loss, 0) margin = 20 D_loss = margin - fake_loss + real_loss G_loss = fake_loss # no pt def optimizer(loss, d_or_g): optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.5) #print([v.name for v in tf.trainable_variables() if v.name.startswith(d_or_g)]) var_list = [v for v in tf.trainable_variables() if v.name.startswith(d_or_g)] gradient = optim.compute_gradients(loss, var_list=var_list) return optim.apply_gradients(gradient) train_op_G = optimizer(G_loss, 'Generator') train_op_D = optimizer(D_loss, 'Discriminator') with tf.Session() as sess: sess.run(tf.global_variables_initializer(), feed_dict={train_phase: True}) saver = tf.train.Saver() # 恢复前一次训练 ckpt = tf.train.get_checkpoint_state('.') if ckpt != None: print(ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) else: print("没找到模型") step = 0 for i in range(40): for j in range(num_batch): batch_noise = np.random.uniform(-1.0, 1.0, size=[batch_size, z_dim]).astype(np.float32) d_loss, _ = sess.run([D_loss, train_op_D], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True}) g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True}) g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True}) print(step, d_loss, g_loss) # 保存模型并生成图像 if step % 100 == 0: saver.save(sess, "celeba.model", global_step=step) test_noise = np.random.uniform(-1.0, 1.0, size=(5, z_dim)).astype(np.float32) images = sess.run(fake_image, feed_dict={noise: test_noise, train_phase: False}) for k in range(5): image = images[k, :, :, :] image += 1 image *= 127.5 image = np.clip(image, 0, 255).astype(np.uint8) image = np.reshape(image, (IMAGE_SIZE, IMAGE_SIZE, -1)) misc.imsave('fake_image' + str(step) + str(k) + '.jpg', image) step += 1
2000step就出现了人脸的雏型,接着练吧,再改改参数。
ps.昨天做梦,梦见自己变成矩阵了,太诡异了。
Share the post "TensorFlow练习24: GANs-生成对抗网络 (生成明星脸)"