转载

听说你会 Python (2):Python 高阶数据结构解析

之前写过一篇《听说你会 Python ?》的文章,大家反响都还不错,那么我想干脆把这个文章做成一个系列,继续讲解一下 Python 当中那些不为人知的细节吧。然后之前在和师父川爷讨论面试的时候,川爷说了一句“要是我,我就考考你们怎么去实现一个 namedtuple ,好用,方便,又能区分人”,说者无心,听者有意,我于是决定在这次的文章中,和大家聊一聊 Python 中一个特殊的高阶数据结构, namedtuple 的实现。

Let’s begin

namedtuple

介绍

tuple 是 Python 中 build-in 的一种特殊的数据结构,它是一种 immutable 的数据集合,我们经常会这样使用它

deftest():
    a = (1, 2)
    print(a)
    return a


if __name__ == '__main__':
    b, c = test()
    print(a)

Right,很多时候我们会直接使用 tuple 来进行一些数据的 packing/unpacking 的操作。OK,关于 tuple 的科普就到这里。那么什么是 namedtuple 呢,恩,前面不是说了 tuple 是一种特殊的数据集合么,那么 namedtuple 是其一个进阶(这不是废话么)。它将会基础的 tuple 抽象成一个类,我们将自行定义变量的名称和类的名称,这样我们可以很方便的将其复用并管理。具体的用法我们可以看看下面这个例子

if __name__ == '__main__':
    fuck=namedtuple("fuck", ['x', 'y'])
    a=fuck(1,2)
    print(a.x)
    print(a.y)

恩,这样看起来貌似更直观了点,但是,但是,但是,我猜你肯定想知道 namedtuple 是怎么实现的,那么我们先来看看代码吧

详解

_class_template = '''/
class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return '{typename}({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

{field_defs}
'''

_repr_template = '{name}=%r'

_field_template = '''/
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

defnamedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessible by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Validate the field names. At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, basestring):
        field_names = field_names.replace(',', ' ').split()
    field_names = map(str, field_names)
    typename = str(typename)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not all(c.isalnum() or c=='_' for c in name)
                or _iskeyword(name)
                or not name
                or name[0].isdigit()
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if type(name) != str:
            raise TypeError('Type names and field names must be strings')
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain '
                             'alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with '
                             'a number: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '/n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )
    if verbose:
        print class_definition

    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                     OrderedDict=OrderedDict, _property=property, _tuple=tuple)
    try:
        exec class_definition in namespace
    except SyntaxError as e:
        raise SyntaxError(e.message + ':/n' + class_definition)
    result = namespace[typename]

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created. Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython).
    try:
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return result

这,这,这,这特么什么玩意儿啊!没事,我们慢慢来看。

首先,下面这一部分代码,将会校验我们传入的数据是否符合要求

if isinstance(field_names, basestring):
    field_names = field_names.replace(',', ' ').split()
field_names = map(str, field_names)
typename = str(typename)
if rename:
    seen = set()
    for index, name in enumerate(field_names):
        if (not all(c.isalnum() or c=='_' for c in name)
            or _iskeyword(name)
            or not name
            or name[0].isdigit()
            or name.startswith('_')
            or name in seen):
            field_names[index] = '_%d' % index
        seen.add(name)
for name in [typename] + field_names:
    if type(name) != str:
        raise TypeError('Type names and field names must be strings')
    if not all(c.isalnum() or c=='_' for c in name):
        raise ValueError('Type names and field names can only contain '
                         'alphanumeric characters and underscores: %r' % name)
    if _iskeyword(name):
        raise ValueError('Type names and field names cannot be a '
                         'keyword: %r' % name)
    if name[0].isdigit():
        raise ValueError('Type names and field names cannot start with '
                         'a number: %r' % name)
seen = set()
for name in field_names:
    if name.startswith('_') and not rename:
        raise ValueError('Field names cannot start with an underscore: '
                         '%r' % name)
    if name in seen:
        raise ValueError('Encountered duplicate field name: %r' % name)
    seen.add(name)

接着,便是我们 namedtuple 的核心代码

class_definition = _class_template.format(
    typename = typename,
    field_names = tuple(field_names),
    num_fields = len(field_names),
    arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
    repr_fmt = ', '.join(_repr_template.format(name=name)
                         for name in field_names),
    field_defs = '/n'.join(_field_template.format(index=index, name=name)
                           for index, name in enumerate(field_names))
)
if verbose:
    print class_definition

# Execute the template string in a temporary namespace and support
# tracing utilities by setting a value for frame.f_globals['__name__']
namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                 OrderedDict=OrderedDict, _property=property, _tuple=tuple)
try:
    exec class_definition in namespace
except SyntaxError as e:
    raise SyntaxError(e.message + ':/n' + class_definition)
result = namespace[typename]

你是不是想说,what the fuck!我知道, class_definition_repr_template_field_template 是前面所定义的字符串模板

_class_template = '''/
class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return '{typename}({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

{field_defs}
'''

_repr_template = '{name}=%r'

_field_template = '''/
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

但是其余的是什么鬼啊!别急,字符串模板我们先放在一边,我们先来看看后面的一段代码

namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                     OrderedDict=OrderedDict, _property=property, _tuple=tuple)
try:
    exec class_definition in namespace
except SyntaxError as e:
    raise SyntaxError(e.message + ':/n' + class_definition)
result = namespace[typename]

在这段代码中,首先 namespace 变量是一个字典,里面设置了一些变量的存在,紧接就是 exec class_definition in namespace 。众所周知,Python 是一门动态语言,在 Python 中,解释器允许我们在运行时,生成一些包含了符合 Python 语法语句的字符串,并用 exec 将其作为 Python 代码进行执行。同时在我们生成一些语句字符串的时候,我们可能会使用一些自定义的变量,于是,我们需要提供一个 dict 供其进行变量的查找。知道前面这些知识点后, exec class_definition in namespace 的作用是不是就很清楚了捏。

好了,我们再回过头去看 class_definition 定义。不过我们直接看未格式化之前的模板未免的太过于枯燥和难懂了,我们干脆以前面举过的一个例子来看看格式化后的 class_definition 吧~

classfuck(tuple):
    'fuck(x, y)'

    __slots__ = ()

    _fields = ('x', 'y')

    def__new__(_cls, x, y):
        'Create new instance of fuck(x, y)'
        return _tuple.__new__(_cls, (x, y))

 @classmethod
    def_make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new fuck object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != 2:
            raise TypeError('Expected 2 arguments, got %d' % len(result))
        return result

    def__repr__(self):
        'Return a nicely formatted representation string'
        return 'fuck(x=%r, y=%r)' % self

    def_asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def_replace(_self, **kwds):
        'Return a new fuck object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, ('x', 'y'), _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def__getnewargs__(self):
        'Return self as a plain tuple. Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def__getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

    x = _property(_itemgetter(0), doc='Alias for field number 0')

    y = _property(_itemgetter(1), doc='Alias for field number 1')

好了,让我们一点点来分析,首先 class fuck(tuple) 指明我们创建的 fuck 类是继承自 tuple 。紧接着 __new__ 是 Python 对象系统中的一个特殊方法,用于我们的实例化的操作,其在 __init__ 之前便被触发,其是一个特殊的静态方法,我们可以将其用于实例缓存等特殊的功能。在这里, __new__ 将会返回一个 tuple 的实例。

接下来的是是一些特殊的私有方法,代码很好懂,我们就不细讲了,接着我们来看看这样一段代码

x = _property(_itemgetter(0), doc='Alias for field number 0')

y = _property(_itemgetter(1), doc='Alias for field number 1')

你可能还不知道这两段代码用来是干什么的233,没事儿,我们慢慢来。

还记得前面我们举过的一个例子么

if __name__ == '__main__':
    fuck=namedtuple("fuck", ['x', 'y'])
    a=fuck(1,2)
    print(a.x)
    print(a.y)

你可能会突发奇想,要是我们执行 a.x=1 这样的操作会怎样呢?OK,你会发现,Python 会抛出一个异常叫做 AttributeError: can't set attribute ,嗯哼,讲到这里,你可能就知道前面提到的包含 property 的两行代码作用就是保证 namedtupleimmutable 的特性。那么你可能还是不知道这是为什么。这和 Python 增加的描述符机制有关

扩展(1):Python 中的描述符

首先我们要明确一点,描述符指的是实现了描述符协议的特殊的类,三个描述符协议指的是 __get__ , ‘ set ‘ , __delete__ 以及 Python 3.6 中新增的 __set_name__ 方法,其中实现了 __get__ 以及 __set__ / __delete__ / __set_name__ 的是 Data descriptors ,而只实现了 __get__ 的是 Non-Data descriptor 。那么有什么区别呢,前面说了, 我们如果调用一个属性,那么其顺序是优先从实例的 __dict__ 里查找,然后如果没有查找到的话,那么一次查询类字典,父类字典,直到彻底查不到为止。 但是,这里没有考虑描述符的因素进去,如果将描述符因素考虑进去,那么正确的表述应该是 我们如果调用一个属性,那么其顺序是优先从实例的 __dict__ 里查找,然后如果没有查找到的话,那么一次查询类字典,父类字典,直到彻底查不到为止。其中如果在类实例字典中的该属性是一个 Data descriptors ,那么无论实例字典中存在该属性与否,无条件走描述符协议进行调用,在类实例字典中的该属性是一个 Non-Data descriptors ,那么优先调用实例字典中的属性值而不触发描述符协议,如果实例字典中不存在该属性值,那么触发 Non-Data descriptor 的描述符协议

可能这讲完了,你还是不清楚和前面问题有什么关联,没事儿,我们接下来会讲讲 property 的实现

扩展(2):Property 详解

首先我们来看看关于 Property 的实现

classProperty(object):
    "Emulate PyProperty_Type() in Objects/descrobject.c"
    def__init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        if doc is None and fget is not None:
            doc = fget.__doc__
        self.__doc__ = doc

    def__get__(self, obj, objtype=None):
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(obj)

    def__set__(self, obj, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(obj, value)

    def__delete__(self, obj):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(obj)

    defgetter(self, fget):
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    defsetter(self, fset):
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    defdeleter(self, fdel):
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

当我们执行完这两句语句时

x = _property(_itemgetter(0), doc='Alias for field number 0')

y = _property(_itemgetter(1), doc='Alias for field number 1')

我们的 xy 就变成了一个 property 对象的实例,它们也是一个描述符,还记得我们前面讲的么,当一个变量/成员成为一个描述符后,它将改变正常的调用逻辑,现在当我们 a.x=1 的时候,因为我们的x是一个 Data descriptors ,那么不管我们的实例字典中是否有 x 的存在,我们都会触发其 __set__ 方法,由于在我们初始化 xy 两个变量时,没有给予其传入 fset 的方法,因此,我们 __set__ 方法在运行过程中将会抛出 AttributeError("can't set attribute") 的异常,这也保证了 namedtuple 遵循了 tupleimmutable 的特性!是不是很优美!Amazing!

吐槽向

其实很多人不知道我为什么选择 namedtuple 来作为本期的主题,其实很简单呀, namedtuple 中预定义模板,格式化,然后用 exec 函数进行执行这一套方法,是目前 Python 中主流模板引擎的核心原理。某种意义上讲,你在吃透这一点后,你也掌握了怎样去实现一个简易模板引擎的方法,如果大家有兴趣,我们可以下次一起来写一个简单的模板引擎。还有就是在 namedtuple 对于 Python 中的一些高阶特性使用的简直优美无比,这也是我们学习的好例子。

最后的最后,作为另一个写的非常优美的例子,我将 orderdict 的代码贴出来,大家可以下来看看,然后评论区我们讨论一个!

classOrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.

    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # Each link is stored as a list of length three: [PREV, NEXT, KEY].

    def__init__(*args, **kwds):
        '''Initialize an ordered dictionary. The signature is the same as
        regular dictionaries, but keyword arguments are not recommended because
        their insertion order is arbitrary.

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'OrderedDict' object "
                            "needs an argument")
        self = args[0]
        args = args[1:]
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__root = root = []                     # sentinel node
            root[:] = [root, root, None]
            self.__map = {}
        self.__update(*args, **kwds)

    def__setitem__(self, key, value, dict_setitem=dict.__setitem__):
        'od.__setitem__(i, y) <==> od[i]=y'
        # Setting a new item creates a new link at the end of the linked list,
        # and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            root = self.__root
            last = root[0]
            last[1] = root[0] = self.__map[key] = [last, root, key]
        return dict_setitem(self, key, value)

    def__delitem__(self, key, dict_delitem=dict.__delitem__):
        'od.__delitem__(y) <==> del od[y]'
        # Deleting an existing item uses self.__map to find the link which gets
        # removed by updating the links in the predecessor and successor nodes.
        dict_delitem(self, key)
        link_prev, link_next, _ = self.__map.pop(key)
        link_prev[1] = link_next                        # update link_prev[NEXT]
        link_next[0] = link_prev                        # update link_next[PREV]

    def__iter__(self):
        'od.__iter__() <==> iter(od)'
        # Traverse the linked list in order.
        root = self.__root
        curr = root[1]                                  # start at the first node
        while curr is not root:
            yield curr[2]                               # yield the curr[KEY]
            curr = curr[1]                              # move to next node

    def__reversed__(self):
        'od.__reversed__() <==> reversed(od)'
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root[0]                                  # start at the last node
        while curr is not root:
            yield curr[2]                               # yield the curr[KEY]
            curr = curr[0]                              # move to previous node

    defclear(self):
        'od.clear() -> None. Remove all items from od.'
        root = self.__root
        root[:] = [root, root, None]
        self.__map.clear()
        dict.clear(self)

    # -- the following methods do not depend on the internal structure --

    defkeys(self):
        'od.keys() -> list of keys in od'
        return list(self)

    defvalues(self):
        'od.values() -> list of values in od'
        return [self[key] for key in self]

    defitems(self):
        'od.items() -> list of (key, value) pairs in od'
        return [(key, self[key]) for key in self]

    defiterkeys(self):
        'od.iterkeys() -> an iterator over the keys in od'
        return iter(self)

    defitervalues(self):
        'od.itervalues -> an iterator over the values in od'
        for k in self:
            yield self[k]

    defiteritems(self):
        'od.iteritems -> an iterator over the (key, value) pairs in od'
        for k in self:
            yield (k, self[k])

    update = MutableMapping.update

    __update = update # let subclasses override update without breaking __init__

    __marker = object()

    defpop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default

    defsetdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default

    defpopitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        key = next(reversed(self) if last else iter(self))
        value = self.pop(key)
        return key, value

    def__repr__(self, _repr_running={}):
        'od.__repr__() <==> repr(od)'
        call_key = id(self), _get_ident()
        if call_key in _repr_running:
            return '...'
        _repr_running[call_key] = 1
        try:
            if not self:
                return '%s()' % (self.__class__.__name__,)
            return '%s(%r)' % (self.__class__.__name__, self.items())
        finally:
            del _repr_running[call_key]

    def__reduce__(self):
        'Return state information for pickling'
        items = [[k, self[k]] for k in self]
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        if inst_dict:
            return (self.__class__, (items,), inst_dict)
        return self.__class__, (items,)

    defcopy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)

 @classmethod
    deffromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.

        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self

    def__eq__(self, other):
        '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.

        '''
        if isinstance(other, OrderedDict):
            return dict.__eq__(self, other) and all(_imap(_eq, self, other))
        return dict.__eq__(self, other)

    def__ne__(self, other):
        'od.__ne__(y) <==> od!=y'
        return not self == other

    # -- the following methods support python 3.x style dictionary views --

    defviewkeys(self):
        "od.viewkeys() -> a set-like object providing a view on od's keys"
        return KeysView(self)

    defviewvalues(self):
        "od.viewvalues() -> an object providing a view on od's values"
        return ValuesView(self)

    defviewitems(self):
        "od.viewitems() -> a set-like object providing a view on od's items"
        return ItemsView(self)

参考目录

  • Descriptor HowTo Guide
  • Python 描述符入门指北
  • collections
原文  http://manjusaka.itscoder.com/2016/12/28/Someone-tell-me-that-you-think-Python-is-simple-2/
正文到此结束
Loading...