转载

深入解析OkHttp3

OkHttp是一个精巧的网络请求库,有如下特性:

1)支持http2,对一台机器的所有请求共享同一个socket

2)内置连接池,支持连接复用,减少延迟

3)支持透明的gzip压缩响应体

4)通过缓存避免重复的请求

5)请求失败时自动重试主机的其他ip,自动重定向

6)好用的API

其本身就是一个很强大的库,再加上Retrofit2、Picasso的这一套组合拳,使其愈发的受到开发者的关注。本篇博客,我将对Okhttp3进行分析(源码基于Okhttp3.4)。

如何引入Okhttp3?

配置Okhttp3非常简单,只需要在Android Studio 的gradle进行如下的配置:

compile 'com.squareup.okhttp3:okhttp:3.4.1'

添加网络权限:

<uses-permission android:name="android.permission.INTERNET"/>

Okhttp3的基本使用

okHttp的get请求okHttp的一般使用如下,okHttp默认使用的就是get请求

String url = "http://write.blog.csdn.net/postlist/0/0/enabled/1";
    mHttpClient = new OkHttpClient();

    Request request = new Request.Builder().url(url).build();
    okhttp3.Response response = null;
    try {

            response = mHttpClient.newCall(request).execute();
            String json = response.body().string();
            Log.d("okHttp",json);

    } catch (IOException e) {
        e.printStackTrace();
    }



}

我们试着将数据在logcat进行打印,发现会报错,原因就是不能在主线程中进行耗时的操作

深入解析OkHttp3

说明mHttpClient.newCall(request).execute()是同步的,那有没有异步的方法呢,答案是肯定的,就是mHttpClient.newCall(request).enqueue()方法,里面需要new一个callback我们对代码进行修改,如下

public void requestBlog() {
     String url = "http://write.blog.csdn.net/postlist/0/0/enabled/1";

     mHttpClient = new OkHttpClient();

     Request request = new Request.Builder().url(url).build();
/* okhttp3.Response response = null;*/

         /*response = mHttpClient.newCall(request).execute();*/
     mHttpClient.newCall(request).enqueue(new Callback() {
         @Override
         public void onFailure(Call call, IOException e) {

         }

         @Override
         public void onResponse(Call call, Response response) throws IOException {
             String json = response.body().string();
             Log.d("okHttp", json);
         }
     });


 }

深入解析OkHttp3

Okhttp的POST请求

POST提交Json数据

private void postJson() throws IOException {
    String url = "http://write.blog.csdn.net/postlist/0/0/enabled/1";
    String json = "haha";

    OkHttpClient client = new OkHttpClient();

    RequestBody body = RequestBody.create(JSON, json);
    Request request = new Request.Builder()
            .url(url)
            .post(body)
            .build();
    client.newCall(request).enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {

        }

        @Override
        public void onResponse(Call call, Response response) throws IOException {

            Log.d(TAG, response.body().string());
        }
    });


}

POST提交键值对很多时候我们会需要通过POST方式把键值对数据传送到服务器。 OkHttp提供了很方便的方式来做这件事情。

private void post(String url, String json) throws IOException {
     OkHttpClient client = new OkHttpClient();
     RequestBody formBody = new FormBody.Builder()
             .add("name", "liming")
             .add("school", "beida")
             .build();

     Request request = new Request.Builder()
             .url(url)
             .post(formBody)
             .build();

     Call call = client.newCall(request);
     call.enqueue(new Callback() {
         @Override
         public void onFailure(Call call, IOException e) {

         }

         @Override
         public void onResponse(Call call, Response response) throws IOException {
             String str = response.body().string();
             Log.i(TAG, str);

         }

     });
 }
异步上传文件

上传文件本身也是一个POST请求

定义上传文件类型

public static final MediaType MEDIA_TYPE_MARKDOWN
        = MediaType.parse("text/x-markdown; charset=utf-8");

将文件上传到服务器上:

private void postFile() {
    OkHttpClient mOkHttpClient = new OkHttpClient();
    File file = new File("/sdcard/demo.txt");
    Request request = new Request.Builder()
            .url("https://api.github.com/markdown/raw")
            .post(RequestBody.create(MEDIA_TYPE_MARKDOWN, file))
            .build();

    mOkHttpClient.newCall(request).enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {

        }

        @Override
        public void onResponse(Call call, Response response) throws IOException {
            Log.i(TAG, response.body().string());
        }
    });
}

添加如下权限:

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

提取响应头典型的HTTP头 像是一个 Map

private final OkHttpClient client = new OkHttpClient();

public void run() throws Exception {
    Request request = new Request.Builder()
            .url("https://api.github.com/repos/square/okhttp/issues")
            .header("User-Agent", "OkHttp Headers.java")
            .addHeader("Accept", "application/json; q=0.5")
            .addHeader("Accept", "application/vnd.github.v3+json")
            .build();

    Response response = client.newCall(request).execute();
    if (!response.isSuccessful()) throw new IOException("Unexpected code " + response);

    System.out.println("Server: " + response.header("Server"));
    System.out.println("Date: " + response.header("Date"));
    System.out.println("Vary: " + response.headers("Vary"));
}

Post方式提交String使用HTTP POST提交请求到服务。这个例子提交了一个markdown文档到web服务,以HTML方式渲染markdown。因为整个请求体都在内存中,因此避免使用此api提交大文档(大于1MB)。

private void postString() throws IOException {


    OkHttpClient client = new OkHttpClient();


    String postBody = ""
            + "Releases/n"
            + "--------/n"
            + "/n"
            + " * zhangfei/n"
            + " * guanyu/n"
            + " * liubei/n";

    Request request = new Request.Builder()
            .url("https://api.github.com/markdown/raw")
            .post(RequestBody.create(MEDIA_TYPE_MARKDOWN, postBody))
            .build();

    Call call = client.newCall(request);
    call.enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {

        }

        @Override
        public void onResponse(Call call, Response response) throws IOException {
            System.out.println(response.body().string());

        }

    });


}

Post方式提交流

以流的方式POST提交请求体。请求体的内容由流写入产生。这个例子是流直接写入Okio的BufferedSink。你的程序可能会使用OutputStream,你可以使用BufferedSink.outputStream()来获取。

public static final MediaType MEDIA_TYPE_MARKDOWN
        = MediaType.parse("text/x-markdown; charset=utf-8");

private void postStream() throws IOException {
    RequestBody requestBody = new RequestBody() {
        @Override
        public MediaType contentType() {
            return MEDIA_TYPE_MARKDOWN;
        }

        @Override
        public void writeTo(BufferedSink sink) throws IOException {
            sink.writeUtf8("Numbers/n");
            sink.writeUtf8("-------/n");
            for (int i = 2; i <= 997; i++) {
                sink.writeUtf8(String.format(" * %s = %s/n", i, factor(i)));
            }
        }

        private String factor(int n) {
            for (int i = 2; i < n; i++) {
                int x = n / i;
                if (x * i == n) return factor(x) + " × " + i;
            }
            return Integer.toString(n);
        }
    };

    Request request = new Request.Builder()
            .url("https://api.github.com/markdown/raw")
            .post(requestBody)
            .build();

    Call call = client.newCall(request);
    call.enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {

        }

        @Override
        public void onResponse(Call call, Response response) throws IOException {
            System.out.println(response.body().string());

        }

    });
}

Post方式提交表单

private void postForm() {
    OkHttpClient client = new OkHttpClient();

    RequestBody formBody = new FormBody.Builder()
            .add("search", "Jurassic Park")
            .build();

    Request request = new Request.Builder()
            .url("https://en.wikipedia.org/w/index.php")
            .post(formBody)
            .build();

    Call call = client.newCall(request);
    call.enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {

        }

        @Override
        public void onResponse(Call call, Response response) throws IOException {
            System.out.println(response.body().string());

        }

    });

}

Post方式提交分块请求MultipartBody 可以构建复杂的请求体,与HTML文件上传形式兼容。多块请求体中每块请求都是一个请求体,可以定义自己的请求头。这些请求头可以用来描述这块请求,例如他的Content-Disposition。如果Content-Length和Content-Type可用的话,他们会被自动添加到请求头中。

private static final String IMGUR_CLIENT_ID = "...";
private static final MediaType MEDIA_TYPE_PNG = MediaType.parse("image/png");

private void postMultipartBody() {
    OkHttpClient client = new OkHttpClient();


    // Use the imgur image upload API as documented at https://api.imgur.com/endpoints/image
    MultipartBody body = new MultipartBody.Builder("AaB03x")
            .setType(MultipartBody.FORM)
            .addPart(
                    Headers.of("Content-Disposition", "form-data; name=/"title/""),
                    RequestBody.create(null, "Square Logo"))
            .addPart(
                    Headers.of("Content-Disposition", "form-data; name=/"image/""),
                    RequestBody.create(MEDIA_TYPE_PNG, new File("website/static/logo-square.png")))
            .build();

    Request request = new Request.Builder()
            .header("Authorization", "Client-ID " + IMGUR_CLIENT_ID)
            .url("https://api.imgur.com/3/image")
            .post(body)
            .build();

    Call call = client.newCall(request);
    call.enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {

        }

        @Override
        public void onResponse(Call call, Response response) throws IOException {
            System.out.println(response.body().string());

        }

    });
}
响应缓存

为了缓存响应,你需要一个你可以读写的缓存目录,和缓存大小的限制。这个缓存目录应该是私有的,不信任的程序应不能读取缓存内容。

一个缓存目录同时拥有多个缓存访问是错误的。大多数程序只需要调用一次new OkHttpClient(),在第一次调用时配置好缓存,然后其他地方只需要调用这个实例就可以了。否则两个缓存示例互相干扰,破坏响应缓存,而且有可能会导致程序崩溃。

响应缓存使用HTTP头作为配置。你可以在请求头中添加Cache-Control: max-stale=3600 ,OkHttp缓存会支持。你的服务通过响应头确定响应缓存多长时间,例如使用Cache-Control: max-age=9600。

int cacheSize = 10 * 1024 * 1024; // 10 MiB
Cache cache = new Cache(cacheDirectory, cacheSize);

OkHttpClient.Builder builder = new OkHttpClient.Builder();
builder.cache(cache);
OkHttpClient client = builder.build();

Request request = new Request.Builder()
        .url("http://publicobject.com/helloworld.txt")
        .build();

Call call = client.newCall(request);
call.enqueue(new Callback() {
    @Override
    public void onFailure(Call call, IOException e) {

    }

    @Override
    public void onResponse(Call call, Response response) throws IOException {
        String response1Body = response.body().string();
        System.out.println("Response 1 response:          " + response);
        System.out.println("Response 1 cache response:    " + response.cacheResponse());
        System.out.println("Response 1 network response:  " + response.networkResponse());
    }

});

超时没有响应时使用超时结束call。没有响应的原因可能是客户点链接问题、服务器可用性问题或者这之间的其他东西。OkHttp支持连接,读取和写入超时。

private void ConfigureTimeouts() {

    OkHttpClient.Builder builder = new OkHttpClient.Builder();
    OkHttpClient client = builder.build();

    client.newBuilder().connectTimeout(10, TimeUnit.SECONDS);
    client.newBuilder().readTimeout(10,TimeUnit.SECONDS);
    client.newBuilder().writeTimeout(10,TimeUnit.SECONDS);

    Request request = new Request.Builder()
            .url("http://httpbin.org/delay/2") // This URL is served with a 2 second delay.
            .build();

    Call call = client.newCall(request);
    call.enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {

        }

        @Override
        public void onResponse(Call call, Response response) throws IOException {
            System.out.println("Response completed: " + response);
        }

    });

}

简单封装okHttp框架

新建一个工具类OkHttpUtils

OkHttpClient必须是单例的,所以这里我们需要使用到单例设计模式,私有化构造函数,提供一个方法给外界获取OkHttpUtils实例对象

public class OkHttpUtils {

    private  static  OkHttpUtils mInstance;
    private OkHttpClient mHttpClient;

    private OkHttpUtils() {

    };

    public static  OkHttpUtils getInstance(){
        return  mInstance;
    }

}

一般网络请求分为get和post请求两种,但无论哪种请求都是需要用到request的,所以我们首先封装一个request,创建一个doRequest方法,在其内先编写mHttpClient.newCall(request).enqueue(new Callback())相关逻辑

public  void doRequest(final Request request){

    mHttpClient.newCall(request).enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {

        }

        @Override
        public void onResponse(Call call, Response response) throws IOException {

        }
    });
}

我们需要自定义一个callback,BaseCallback,并将其传入request方法中

public class BaseCallback  {

}

在OkHttpUtils中编写get和post方法

public void get(String url){


}

public void post(String url,Map<String,Object> param){


}

post方法中构建request对象,这里我们需要创建一个buildRequest方法,用于生成request对象

private  Request buildRequest(String url,HttpMethodType methodType,Map<String,Object> params){
    return null;
}

这里需要定一个枚举对象HttpMethodType,用于区分是get还是post

enum  HttpMethodType{

    GET,
    POST,

}

buildRequest方法根据HttpMethodType不同有相应的逻辑处理

private  Request buildRequest(String url,HttpMethodType methodType,Map<String,Object> params){

    Request.Builder builder = new Request.Builder()
            .url(url);

    if (methodType == HttpMethodType.POST){

        builder.post(body);
    }
    else if(methodType == HttpMethodType.GET){



        builder.get();
    }


    return builder.build();

}

builder.post()方法中需要一个body,所以我们需要创建一个方法builderFormData()方法用于返回RequestBody,这里内部逻辑后面再进行完善

private RequestBody builderFormData(Map<String,Object> params){
    return null;
}

于是buildRequest方法变成了这样

private  Request buildRequest(String url,HttpMethodType methodType,Map<String,Object> params){

    Request.Builder builder = new Request.Builder()
            .url(url);

    if (methodType == HttpMethodType.POST){

        RequestBody body = builderFormData(params);

        builder.post(body);
    }
    else if(methodType == HttpMethodType.GET){



        builder.get();
    }


    return builder.build();

}

get方法进行修改:

public void get(String url,BaseCallback callback){

    Request request = buildRequest(url,HttpMethodType.GET,null);

    doRequest(request,callback);

}

post方法进行修改:

public void post(String url,Map<String,Object> params,BaseCallback callback){

    Request request = buildRequest(url,HttpMethodType.POST,params);

    doRequest(request,callback);
}

完善builderFormData()方法

private RequestBody builderFormData(Map<String,String> params){
    FormBody.Builder builder =  new FormBody.Builder();

    if(params!=null){
        for(Map.Entry<String,String> entry:params.entrySet()){
            builder.add(entry.getKey(),entry.getValue());
        }
    }
    return builder.build();
}

BaseCallback中定义一个抽象方法onBeforeRequest,这样做的理由是我们在加载网络数据成功前,一般都有进度条等显示,这个方法就是用来做这些处理的

public abstract class BaseCallback  {

    public  abstract void onBeforeRequest(Request request);

}

OkHttpUtils的doRequest方法增加如下语句:

baseCallback.onBeforeRequest(request);

BaseCallback中多定义2个抽象方法

public abstract  void onFailure(Request request, Exception e) ;


/**
 *请求成功时调用此方法
 * @param response
 */
public abstract  void onResponse(Response response);

由于Response的状态有多种,比如成功和失败,所以需要onResponse分解为3个抽象方法

/**
 *
 * 状态码大于200,小于300 时调用此方法
 * @param response
 * @param t
 * @throws
 */
public abstract void onSuccess(Response response,T t) ;

/**
 * 状态码400,404,403,500等时调用此方法
 * @param response
 * @param code
 * @param e
 */
public abstract void onError(Response response, int code,Exception e) ;

/**
 * Token 验证失败。状态码401,402,403 等时调用此方法
 * @param response
 * @param code

 */
public abstract void onTokenError(Response response, int code);

response.body.string()方法返回的都是String类型,而我们需要显示的数据其实是对象,所以我们就想抽取出方法,直接返回对象,由于我们不知道对象的类型是什么,所以我们在BaseCallback中使用范型

public abstract class BaseCallback<T>

BaseCallback中需要将泛型转换为Type,所以要声明Type类型

public   Type mType;

BaseCallback中需要如下一段代码,将泛型T转换为Type类型

static Type getSuperclassTypeParameter(Class<?> subclass)
{
    Type superclass = subclass.getGenericSuperclass();
    if (superclass instanceof Class)
    {
        throw new RuntimeException("Missing type parameter.");
    }
    ParameterizedType parameterized = (ParameterizedType) superclass;
    return $Gson$Types.canonicalize(parameterized.getActualTypeArguments()[0]);
}

在BaseCallback的构造函数中进行mType进行赋值

public BaseCallback()
{
    mType = getSuperclassTypeParameter(getClass());
}

OkHttpUtils中doRequest方法的onFailure与onResponse方法会相应的去调用baseCallback的方法

mHttpClient.newCall(request).enqueue(new Callback() {
    @Override
    public void onFailure(Call call, IOException e) {
        baseCallback.onFailure(request,e);
    }

    @Override
    public void onResponse(Call call, Response response) throws IOException {

        if(response.isSuccessful()) {

            baseCallback.onSuccess(response,null);


        }else {
            baseCallback.onError(response,response.code(),null);
        }
        /*mGson.fromJson(response.body().string(),baseCallback.mType);*/
    }


});

onResponse方法中成功的情况又有区分,根据mType的类型不同有相应的处理逻辑,同时还要考虑Gson解析错误的情况

@Override
public void onResponse(Call call, Response response) throws IOException {

    if(response.isSuccessful()) {

        String resultStr = response.body().string();

        if (baseCallback.mType == String.class){

            baseCallback.onSuccess(response,resultStr);
        }
        else {
            try {

                Object obj = mGson.fromJson(resultStr, baseCallback.mType);
                baseCallback.onSuccess(response,obj);
            }
            catch (com.google.gson.JsonParseException e){ // Json解析的错误
                baseCallback.onError(response,response.code(),e);
            }
        }


    }else {
        baseCallback.onError(response,response.code(),null);
    }

}

构造函数中进行一些全局变量的初始化的操作,还有一些超时的设计

private OkHttpUtils() {

    mHttpClient = new OkHttpClient();
    OkHttpClient.Builder builder = mHttpClient.newBuilder();
    builder.connectTimeout(10, TimeUnit.SECONDS);
    builder.readTimeout(10,TimeUnit.SECONDS);
    builder.writeTimeout(30,TimeUnit.SECONDS);

    mGson = new Gson();

    };

静态代码块初始化OkHttpUtils对象

static {
    mInstance = new OkHttpUtils();
}

在okHttpUtils内,需要创建handler进行UI界面的更新操作,创建callbackSuccess方法

private void callbackSuccess(final  BaseCallback callback , final Response response, final Object obj ){

    mHandler.post(new Runnable() {
        @Override
        public void run() {
            callback.onSuccess(response, obj);
        }
    });
}

doRequest方法的onResponse方法也进行相应的改写

if (baseCallback.mType == String.class){

    /*baseCallback.onSuccess(response,resultStr);*/
    callbackSuccess(baseCallback,response,resultStr);
}

创建callbackError方法

private void callbackError(final BaseCallback callback, final Response response, final Exception e) {

    mHandler.post(new Runnable() {
        @Override
        public void run() {
            callback.onError(response, response.code(), e);
        }
    });
}

将doRequest方法的onResponse方法中的baseCallback.onError(response,response.code(),e);替换为callbackError(baseCallback,response,e);方法

@Override
public void onResponse(Call call, Response response) throws IOException {

    if(response.isSuccessful()) {

        String resultStr = response.body().string();

        if (baseCallback.mType == String.class){

            /*baseCallback.onSuccess(response,resultStr);*/
            callbackSuccess(baseCallback,response,resultStr);
        }
        else {
            try {

                Object obj = mGson.fromJson(resultStr, baseCallback.mType);
                /*baseCallback.onSuccess(response,obj);*/
                callbackSuccess(baseCallback,response,obj);
            }
            catch (com.google.gson.JsonParseException e){ // Json解析的错误
                /*baseCallback.onError(response,response.code(),e);*/
                callbackError(baseCallback,response,e);
            }
        }


    }else {

        callbackError(baseCallback,response,null);
        /*baseCallback.onError(response,response.code(),null);*/
    }

}

至此,我们的封装基本完成。

OkHttp3源码分析

请求处理分析当我们要请求网络的时候我们需要用OkHttpClient.newCall(request)进行execute或者enqueue操作,当我们调用newCall时:

/**
 * Prepares the {@code request} to be executed at some point in the future.
 */
@Override public Call newCall(Request request) {
  return new RealCall(this, request);
}

实际返回的是一个RealCall类,我们调用enqueue异步请求网络实际上是调用了RealCall的enqueue方法:

@Override public void enqueue(Callback responseCallback) {
  synchronized (this) {
    if (executed) throw new IllegalStateException("Already Executed");
    executed = true;
  }
  client.dispatcher().enqueue(new AsyncCall(responseCallback));
}

最终的请求是dispatcher来完成的。

Dispatcher任务调度

Dispatcher的本质是异步请求的管理器,控制最大请求并发数和单个主机的最大并发数,并持有一个线程池负责执行异步请求。对同步的请求只是用作统计。他是如何做到控制并发呢,其实原理就在上面的2个execute代码里面,真正网络请求执行前后会调用executed和finished方法,而对于AsyncCall的finished方法后,会根据当前并发数目选择是否执行队列中等待的AsyncCall。并且如果修改Dispatcher的maxRequests或者maxRequestsPerHost也会触发这个过程。

Dispatcher主要用于控制并发的请求,它主要维护了以下变量:

/** 最大并发请求数*/
private int maxRequests = 64;
/** 每个主机最大请求数*/
private int maxRequestsPerHost = 5;
/** 消费者线程池 */
private ExecutorService executorService;
/** 将要运行的异步请求队列 */
private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
/**正在运行的异步请求队列 */
private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
/** 正在运行的同步请求队列 */
private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();

构造函数

public Dispatcher(ExecutorService executorService) {
  this.executorService = executorService;
}

public Dispatcher() {
}

public synchronized ExecutorService executorService() {
  if (executorService == null) {
    executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
        new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
  }
  return executorService;
}

Dispatcher有两个构造函数,可以使用自己设定线程池,如果没有设定线程池则会在请求网络前自己创建线程池,这个线程池类似于CachedThreadPool比较适合执行大量的耗时比较少的任务。

异步请求

synchronized void enqueue(AsyncCall call) {
  if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
    runningAsyncCalls.add(call);
    executorService().execute(call);
  } else {
    readyAsyncCalls.add(call);
  }
}

当正在运行的异步请求队列中的数量小于64并且正在运行的请求主机数小于5时则把请求加载到runningAsyncCalls中并在线程池中执行,否则就再入到readyAsyncCalls中进行缓存等待。

AsyncCall线程池中传进来的参数就是AsyncCall它是RealCall的内部类,内部也实现了execute方法:

@Override protected void execute() {
    boolean signalledCallback = false;
    try {
      Response response = getResponseWithInterceptorChain();
      if (retryAndFollowUpInterceptor.isCanceled()) {
        signalledCallback = true;
        responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
      } else {
        signalledCallback = true;
        responseCallback.onResponse(RealCall.this, response);
      }
    } catch (IOException e) {
      if (signalledCallback) {
        // Do not signal the callback twice!
        Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
      } else {
        responseCallback.onFailure(RealCall.this, e);
      }
    } finally {
      client.dispatcher().finished(this);
    }
  }
}

首先我们来看看最后一行, 无论这个请求的结果如何都会执行client.dispatcher().finished(this);

/** Used by {@code AsyncCall#run} to signal completion. */
void finished(AsyncCall call) {
  finished(runningAsyncCalls, call, true);
}

/** Used by {@code Call#execute} to signal completion. */
void finished(RealCall call) {
  finished(runningSyncCalls, call, false);
}

private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
  int runningCallsCount;
  Runnable idleCallback;
  synchronized (this) {
    if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
    if (promoteCalls) promoteCalls();
    runningCallsCount = runningCallsCount();
    idleCallback = this.idleCallback;
  }

  if (runningCallsCount == 0 && idleCallback != null) {
    idleCallback.run();
  }
}
finished方法将此次请求从runningAsyncCalls移除后还执行了promoteCalls方法:
private void promoteCalls() {
  if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
  if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.

  for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
    AsyncCall call = i.next();

    if (runningCallsForHost(call) < maxRequestsPerHost) {
      i.remove();
      runningAsyncCalls.add(call);
      executorService().execute(call);
    }

    if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
  }
}

可以看到最关键的点就是会从readyAsyncCalls取出下一个请求,并加入runningAsyncCalls中并交由线程池处理。好了让我们再回到上面的AsyncCall的execute方法,我们会发getResponseWithInterceptorChain方法返回了Response,很明显这是在请求网络。

Interceptor拦截器

在回到RealCall中,我们看到无论是execute还是enqueue,真正的Response是通过这个函数getResponseWithInterceptorChain获取的,其他的代码都是用作控制与回调。而这里就是真正请求的入口,也是到了OkHttp的一个很精彩的设计:Interceptor与Chain

看一下RealCall中的getResponseWithInterceptorChain方法

private Response getResponseWithInterceptorChain() throws IOException {
  // Build a full stack of interceptors.
  List<Interceptor> interceptors = new ArrayList<>();
  interceptors.addAll(client.interceptors());
  interceptors.add(retryAndFollowUpInterceptor);
  interceptors.add(new BridgeInterceptor(client.cookieJar()));
  interceptors.add(new CacheInterceptor(client.internalCache()));
  interceptors.add(new ConnectInterceptor(client));
  if (!retryAndFollowUpInterceptor.isForWebSocket()) {
    interceptors.addAll(client.networkInterceptors());
  }
  interceptors.add(new CallServerInterceptor(
      retryAndFollowUpInterceptor.isForWebSocket()));

  Interceptor.Chain chain = new RealInterceptorChain(
      interceptors, null, null, null, 0, originalRequest);
  return chain.proceed(originalRequest);
}

这也是与旧版本不一致的地方,在3.4.x以前,没有这些内部的这些拦截器,只有用户的拦截器与网络拦截器。而Request和Response是通过HttpEngine来完成的。在RealCall实现了用户拦截器与RetryAndFollowUp的过程,而在HttpEngine内部处理了请求转换、Cookie、Cache、网络拦截器、连接网络的过程。值得一提的是,在旧版是获取到Response后调用网络拦截器的拦截。

而在这里,RealInterceptorChain会递归的创建并以此调用拦截器,去掉诸多异常,简化版代码如下:

public Response proceed(Request request, StreamAllocation streamAllocation, HttpStream httpStream,
    Connection connection) throws IOException {
  if (index >= interceptors.size()) throw new AssertionError();

  calls++;

  // If we already have a stream, confirm that the incoming request will use it.
  if (this.httpStream != null && !sameConnection(request.url())) {
    throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
        + " must retain the same host and port");
  }

  // If we already have a stream, confirm that this is the only call to chain.proceed().
  if (this.httpStream != null && calls > 1) {
    throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
        + " must call proceed() exactly once");
  }

  // Call the next interceptor in the chain.
  RealInterceptorChain next = new RealInterceptorChain(
      interceptors, streamAllocation, httpStream, connection, index + 1, request);
  Interceptor interceptor = interceptors.get(index);
  Response response = interceptor.intercept(next);

  // Confirm that the next interceptor made its required call to chain.proceed().
  if (httpStream != null && index + 1 < interceptors.size() && next.calls != 1) {
    throw new IllegalStateException("network interceptor " + interceptor
        + " must call proceed() exactly once");
  }

  // Confirm that the intercepted response isn't null.
  if (response == null) {
    throw new NullPointerException("interceptor " + interceptor + " returned null");
  }

  return response;
}

Chain与Interceptor会互相递归调用,直到链的尽头。

我们看到,通过职责链模式,清楚地切开了不同的逻辑,每个拦截器完成自己的职责,从而完成用户的网络请求。

大概流程是:

1)先经过用户拦截器

2)RetryAndFollowUpInterceptor负责自动重试和进行必要的重定向

3)BridgeIntercetor负责将用户Request转换成一个实际的网络请求的Request,再调用下层的拦截器获取Response,最后再将网络Response转换成用户的Reponse

4)CacheInterceptor负责控制缓存

5)ConnectInterceptor负责进行连接主机

6)网络拦截器进行拦截

7)CallServerInterceptor是真正和服务器通信,完成http请求

连接与通信在RetryAndFollowUpInterceptor中,会创建StreamAllocation,然后交给下游的ConnectInterceptor

@Override public Response intercept(Chain chain) throws IOException {
  RealInterceptorChain realChain = (RealInterceptorChain) chain;
  Request request = realChain.request();
  StreamAllocation streamAllocation = realChain.streamAllocation();

  // We need the network to satisfy this request. Possibly for validating a conditional GET.
  boolean doExtensiveHealthChecks = !request.method().equals("GET");
  HttpStream httpStream = streamAllocation.newStream(client, doExtensiveHealthChecks);
  RealConnection connection = streamAllocation.connection();

  return realChain.proceed(request, streamAllocation, httpStream, connection);
}

这里会创建一个HttpStream,并且取到一个RealConnection,继续交给下游的CallServerInterceptor。

我们跟踪进去看看,StreamAllocation里面做了什么

public HttpStream newStream(OkHttpClient client, boolean doExtensiveHealthChecks) {
  int connectTimeout = client.connectTimeoutMillis();
  int readTimeout = client.readTimeoutMillis();
  int writeTimeout = client.writeTimeoutMillis();
  boolean connectionRetryEnabled = client.retryOnConnectionFailure();

  try {
    RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
        writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);

    HttpStream resultStream;
    if (resultConnection.framedConnection != null) {
      resultStream = new Http2xStream(client, this, resultConnection.framedConnection);
    } else {
      resultConnection.socket().setSoTimeout(readTimeout);
      resultConnection.source.timeout().timeout(readTimeout, MILLISECONDS);
      resultConnection.sink.timeout().timeout(writeTimeout, MILLISECONDS);
      resultStream = new Http1xStream(
          client, this, resultConnection.source, resultConnection.sink);
    }

    synchronized (connectionPool) {
      stream = resultStream;
      return resultStream;
    }
  } catch (IOException e) {
    throw new RouteException(e);
  }
}

这里的代码逻辑是这样的,找一个健康的连接,设置超时时间,然后根据协议创建一个HttpStream并返回。

继续跟进去看findHealthyConnection:

private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
    int writeTimeout, boolean connectionRetryEnabled, boolean doExtensiveHealthChecks)
    throws IOException {
  while (true) {
    RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
        connectionRetryEnabled);

    // If this is a brand new connection, we can skip the extensive health checks.
    synchronized (connectionPool) {
      if (candidate.successCount == 0) {
        return candidate;
      }
    }

    // Do a (potentially slow) check to confirm that the pooled connection is still good. If it
    // isn't, take it out of the pool and start again.
    if (!candidate.isHealthy(doExtensiveHealthChecks)) {
      noNewStreams();
      continue;
    }

    return candidate;
  }
}

上面的逻辑也很简单,在findConnection中找一个连接,然后做健康检查,如果不健康就回收,并再次循环,那么真正寻找连接的代码就在findConnection里面了:

/**
 * Returns a connection to host a new stream. This prefers the existing connection if it exists,
 * then the pool, finally building a new connection.
 */
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
    boolean connectionRetryEnabled) throws IOException {
  Route selectedRoute;
  synchronized (connectionPool) {
    if (released) throw new IllegalStateException("released");
    if (stream != null) throw new IllegalStateException("stream != null");
    if (canceled) throw new IOException("Canceled");

    RealConnection allocatedConnection = this.connection;
    if (allocatedConnection != null && !allocatedConnection.noNewStreams) {
      return allocatedConnection;
    }

    // Attempt to get a connection from the pool.
    RealConnection pooledConnection = Internal.instance.get(connectionPool, address, this);
    if (pooledConnection != null) {
      this.connection = pooledConnection;
      return pooledConnection;
    }

    selectedRoute = route;
  }

  if (selectedRoute == null) {
    selectedRoute = routeSelector.next();
    synchronized (connectionPool) {
      route = selectedRoute;
      refusedStreamCount = 0;
    }
  }
  RealConnection newConnection = new RealConnection(selectedRoute);
  acquire(newConnection);

  synchronized (connectionPool) {
    Internal.instance.put(connectionPool, newConnection);
    this.connection = newConnection;
    if (canceled) throw new IOException("Canceled");
  }

  newConnection.connect(connectTimeout, readTimeout, writeTimeout, address.connectionSpecs(),
      connectionRetryEnabled);
  routeDatabase().connected(newConnection.route());

  return newConnection;
}

这里大概分成分成3大步:

1)如果当前有连接并且符合要求的话,就直接返回

2)如果线程池能取到一个符合要求的连接的话,就直接返回

3)如果Route为空,从RouteSelector取一个Route,然后新建一个RealConnection,并放入ConnectionPool,随后调用connect,再返回

也就是说不管当前走的是步骤1还是2,一开始一定是从3开始的,也就是在RealConnection的connect中真正完成了socket连接。

connect里面代码比较长,真正要做的就是一件事,如果是https请求并且是http代理,则建立隧道连接,隧道连接请参考RFC2817,否则建立普通连接。

这两者都调用了2个函数:connectSocket(connectTimeout, readTimeout); establishProtocol(readTimeout, writeTimeout, connectionSpecSelector);

但是隧道连接则多了一个代理认证的过程,可能会反复的connectSocket和构造请求。

看一下connectSocket:

private void connectSocket(int connectTimeout, int readTimeout) throws IOException {
  Proxy proxy = route.proxy();
  Address address = route.address();

  rawSocket = proxy.type() == Proxy.Type.DIRECT || proxy.type() == Proxy.Type.HTTP
      ? address.socketFactory().createSocket()
      : new Socket(proxy);

  rawSocket.setSoTimeout(readTimeout);
  try {
    Platform.get().connectSocket(rawSocket, route.socketAddress(), connectTimeout);
  } catch (ConnectException e) {
    throw new ConnectException("Failed to connect to " + route.socketAddress());
  }
  source = Okio.buffer(Okio.source(rawSocket));
  sink = Okio.buffer(Okio.sink(rawSocket));
}

就是根据Route来创建socket,在connect,随后将rawSocket的InputStream与OutputStream包装成Source与Sink。这里提一下,OkHttp是依赖Okio的,Okio封装了Java的IO API,如这里的Source与Sink,非常简洁实用。

而establishProtocol里,如果是https则走TLS协议,生成一个SSLSocket,并进行握手和验证,同时如果是HTTP2或者SPDY3的话,则生成一个FrameConnection。这里不再多提,HTTP2和HTTP1.X大相径庭,我们这里主要是分析HTTP1.X的连接,后面有机会我们会单独开篇讲HTTP2。同时TLS相关的话题这里也一并略过,想了解的朋友可以看一看相应的Java API和HTTPS连接的资料。

再回到StreamAllcation.newStream的代码resultStream = new Http1xStream( client, this, resultConnection.source, resultConnection.sink);实质上HttpStream其实就是Request和Response读写Socket的抽象,我们看到Http1xStream取到了Socket输入输出流,随后在CallServerInterceptor可以拿来做读写。

我们看CallServerInterceptor做了什么:

@Override public Response intercept(Chain chain) throws IOException {
  HttpStream httpStream = ((RealInterceptorChain) chain).httpStream();
  StreamAllocation streamAllocation = ((RealInterceptorChain) chain).streamAllocation();
  Request request = chain.request();

  long sentRequestMillis = System.currentTimeMillis();
  httpStream.writeRequestHeaders(request);

  if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
    Sink requestBodyOut = httpStream.createRequestBody(request, request.body().contentLength());
    BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
    request.body().writeTo(bufferedRequestBody);
    bufferedRequestBody.close();
  }

  httpStream.finishRequest();

  Response response = httpStream.readResponseHeaders()
      .request(request)
      .handshake(streamAllocation.connection().handshake())
      .sentRequestAtMillis(sentRequestMillis)
      .receivedResponseAtMillis(System.currentTimeMillis())
      .build();

  if (!forWebSocket || response.code() != 101) {
    response = response.newBuilder()
        .body(httpStream.openResponseBody(response))
        .build();
  }

  if ("close".equalsIgnoreCase(response.request().header("Connection"))
      || "close".equalsIgnoreCase(response.header("Connection"))) {
    streamAllocation.noNewStreams();
  }

  int code = response.code();
  if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
    throw new ProtocolException(
        "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
  }

  return response;
}

CallServerInterceptor顾名思义,就是真正和Server进行通信的地方。这里也是按照HTTP协议,依次写入请求头,还有根据情况决定是否写入请求体。随后读响应头闭构造一个Response。

里面具体是如何实现呢,我们看Http1xStream:

首先是写头:

@Override public void writeRequestHeaders(Request request) throws IOException {
  String requestLine = RequestLine.get(
      request, streamAllocation.connection().route().proxy().type());
  writeRequest(request.headers(), requestLine);
}

构造好请求行,进入writeRequest:

/** Returns bytes of a request header for sending on an HTTP transport. */
public void writeRequest(Headers headers, String requestLine) throws IOException {
  if (state != STATE_IDLE) throw new IllegalStateException("state: " + state);
  sink.writeUtf8(requestLine).writeUtf8("/r/n");
  for (int i = 0, size = headers.size(); i < size; i++) {
    sink.writeUtf8(headers.name(i))
        .writeUtf8(": ")
        .writeUtf8(headers.value(i))
        .writeUtf8("/r/n");
  }
  sink.writeUtf8("/r/n");
  state = STATE_OPEN_REQUEST_BODY;
}

这里就一目了然了,就是一行行的写请求行和请求头到sink中

再看readResponse:

/** Parses bytes of a response header from an HTTP transport. */
public Response.Builder readResponse() throws IOException {
  if (state != STATE_OPEN_REQUEST_BODY && state != STATE_READ_RESPONSE_HEADERS) {
    throw new IllegalStateException("state: " + state);
  }

  try {
    while (true) {
      StatusLine statusLine = StatusLine.parse(source.readUtf8LineStrict());

      Response.Builder responseBuilder = new Response.Builder()
          .protocol(statusLine.protocol)
          .code(statusLine.code)
          .message(statusLine.message)
          .headers(readHeaders());

      if (statusLine.code != HTTP_CONTINUE) {
        state = STATE_OPEN_RESPONSE_BODY;
        return responseBuilder;
      }
    }
  } catch (EOFException e) {
    // Provide more context if the server ends the stream before sending a response.
    IOException exception = new IOException("unexpected end of stream on " + streamAllocation);
    exception.initCause(e);
    throw exception;
  }
}

也是一样的,从source中读请求行和请求头

最后看openResponseBody:

@Override public ResponseBody openResponseBody(Response response) throws IOException {
  Source source = getTransferStream(response);
  return new RealResponseBody(response.headers(), Okio.buffer(source));
}

这里说一下就是根据请求的响应把包裹InputStream的source再次封装,里面做一些控制逻辑,然后再封装成ResponseBody。

例如FiexdLengthSource,就是期望获取到byte的长度是固定的值:

/** An HTTP body with a fixed length specified in advance. */
private class FixedLengthSource extends AbstractSource {
  private long bytesRemaining;

  public FixedLengthSource(long length) throws IOException {
    bytesRemaining = length;
    if (bytesRemaining == 0) {
      endOfInput(true);
    }
  }

  @Override public long read(Buffer sink, long byteCount) throws IOException {
    if (byteCount < 0) throw new IllegalArgumentException("byteCount < 0: " + byteCount);
    if (closed) throw new IllegalStateException("closed");
    if (bytesRemaining == 0) return -1;

    long read = source.read(sink, Math.min(bytesRemaining, byteCount));
    if (read == -1) {
      endOfInput(false); // The server didn't supply the promised content length.
      throw new ProtocolException("unexpected end of stream");
    }

    bytesRemaining -= read;
    if (bytesRemaining == 0) {
      endOfInput(true);
    }
    return read;
  }

  @Override public void close() throws IOException {
    if (closed) return;

    if (bytesRemaining != 0 && !Util.discard(this, DISCARD_STREAM_TIMEOUT_MILLIS, MILLISECONDS)) {
      endOfInput(false);
    }

    closed = true;
  }
}

当读完期望的长度时就把这个RealConnection回收,如果少于期望的长度则抛异常。

ConnectionPool

到了OkHttp3时代,ConnectionPool就是每个Client独享的了,我们刚才提到了ConnectionPool,那么他到底是如何运作呢。

ConnectionPool持有一个静态的线程池。

StreamAllocation不管通过什么方式,在获取到RealConnection后,RealConnection会添加一个对StreamAllocation的引用。

在每个RealConnection加入ConnectionPool后,如果当前没有在清理,就会把cleanUpRunnable加入线程池。

cleanUpRunnable里面是一个while(true),一个循环包括:

调用一次cleanUp方法进行清理并返回一个long, 如果是-1则退出,否则调用wait方法等待这个long值的时间

cleanUp代码如下:

ong cleanup(long now) {
  int inUseConnectionCount = 0;
  int idleConnectionCount = 0;
  RealConnection longestIdleConnection = null;
  long longestIdleDurationNs = Long.MIN_VALUE;

  // Find either a connection to evict, or the time that the next eviction is due.
  synchronized (this) {
    for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {
      RealConnection connection = i.next();

      // If the connection is in use, keep searching.
      if (pruneAndGetAllocationCount(connection, now) > 0) {
        inUseConnectionCount++;
        continue;
      }

      idleConnectionCount++;

      // If the connection is ready to be evicted, we're done.
      long idleDurationNs = now - connection.idleAtNanos;
      if (idleDurationNs > longestIdleDurationNs) {
        longestIdleDurationNs = idleDurationNs;
        longestIdleConnection = connection;
      }
    }

    if (longestIdleDurationNs >= this.keepAliveDurationNs
        || idleConnectionCount > this.maxIdleConnections) {
      // We've found a connection to evict. Remove it from the list, then close it below (outside
      // of the synchronized block).
      connections.remove(longestIdleConnection);
    } else if (idleConnectionCount > 0) {
      // A connection will be ready to evict soon.
      return keepAliveDurationNs - longestIdleDurationNs;
    } else if (inUseConnectionCount > 0) {
      // All connections are in use. It'll be at least the keep alive duration 'til we run again.
      return keepAliveDurationNs;
    } else {
      // No connections, idle or in use.
      cleanupRunning = false;
      return -1;
    }
  }

  closeQuietly(longestIdleConnection.socket());

  // Cleanup again immediately.
  return 0;
}

遍历每一个RealConnection,通过引用数目确定哪些是空闲的,哪些是在使用中,同时找到空闲时间最长的RealConnection。

如果空闲数目超过最大空闲数或者空闲时间超过最大空闲时间,则清理掉这个RealConnection,并返回0,表示需要立刻再次清理

否则如果空闲的数目大于0个,则等待最大空闲时间-已有的最长空闲时间

否则如果使用中的数目大于0,则等待最大空闲时间

否则 返回 -1,并标识退出清除状态

同时如果某个RealConnection空闲后,会进入ConnectionPool.connectionBecameIdle方法,如果不可被复用,则被移除,否则立刻唤醒上面cleanUp的wait,再次清理,因为可能超过了最大空闲数目

这样通过一个静态的线程池,ConnectionPool做到了每个实例定期清理,保证不会超过最大空闲时间和最大空闲数目的策略。

OkHttp3分析就到此结束了。

原文  http://blog.csdn.net/u012124438/article/details/54236967
正文到此结束
Loading...