数据的切分(Sharding)根据其切分规则的类型,可以分为两种切分模式。一种是按照不同的表(或者Schema)来切分到不同的数据库(主机)之上,这种切可以称之为数据的垂直(纵向)切分;另外一种则是根据表中的数据的逻辑关系,将同一个表中的
数据按照某种条件拆分到多台数据库(主机)上面,这种切分称之为数据的水平(横向)切分。
垂直切分
一个数据库由很多表的构成,每个表对应着不同的业务,垂直切分是指按照业务将表进行分类,分布到不同的数据库上面,这样也就将数据或者说压力分担到不同的库上面, 如下图:
垂直切分的优缺点介绍:
优点:
拆分后业务清晰,拆分规则明确。
系统之间整合或扩展容易。
数据维护简单。
缺点:
部分业务表无法join,只能通过接口方式解决,提高了系统复杂度。
受每种业务不同的限制存在单库性能瓶颈,不易数据扩展跟性能提高。
事务处理复杂。
由于垂直切分是按照业务的分类将表分散到不同的库,所以有些业务表会过于庞大,存在单库读写与存储瓶颈,所以就需要水平
拆分来做解决。
水平切分
相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分到一个数据库,而另外的某些行又切
分到其他的数据库中,如下图:
水平切分的优缺点介绍:
优点:
拆分规则抽象好,join操作基本可以数据库做。
不存在单库大数据,高并发的性能瓶颈。
应用端改造较少。
提高了系统的稳定性跟负载能力。
缺点:
拆分规则难以抽象。
分片事务一致性难以解决。
数据多次扩展难度跟维护量极大。
跨库join性能较差。
垂直切分和水平切分共同的特点和缺点有:
引入分布式事务的问题。
跨节点Join的问题。
跨节点合并排序分页问题。
多数据源管理问题。