转载

Spring框架中的设计模式(五)

通过以前的4篇文章,我们看到Spring采用了大量的关于创建和结构方面的设计模式。

本文将描述属于行为方面的两种设计模式:命令和访问者。

命令模式

这篇文章描述的第一个行为设计模式是 命令 。它允许将请求封装在一个对象内并附加一个回调动作(每次遇到所所谓的回调大家就只需要理解为一个函数方法就好,省的去浪费那么多脑子)。请求被封装在命令对象之下,而请求的结果被发送到接收者。命令本身不是由调用者执行。为了直白了解其中的主要思想,想象一下管理服务器的情况(远程通过 ssh 操作 Linux 服务器)。管理员( invoker )在命令行( commands )中启动一些操作,将结果发送到服务器(接收器)。在这里,所有这一切都是由客户端的终端(也就是我们用的 xshell )来完成的。搞个 Demo 来说明一下(对于命令,它的动作就是执行,对于管理员来讲,我们的动作其实就是一个回车,执不执行当然是管理员说的算了,执行交给命令对象了,服务器最后就是一个展示结果):

public class CommandTest{
 
  // This test method is a client
  @Test
  public void test(){
    Administrator admin = new Administrator();
    Server server = new Server();
     
    // start Apache
    admin.setCommand(new StartApache(server));
    admin.typeEnter();
     
    // start Tomcat
    admin.setCommand(new StartTomcat(server));
    admin.typeEnter();
     
    // check executed commands
    int executed = server.getExecutedCommands().size();
    assertTrue("Two commands should be executed but only "+
      executed+ " were", executed == 2);
  }
 
}
 
// commands
abstract class ServerCommand{
         
  protected Server server;
   
  public ServerCommand(Server server){
    this.server = server;
  }
 
  public abstract void execute();
}
 
class StartTomcatextends ServerCommand{
         
  public StartTomcat(Server server){
    super(server);
  }
   
  @Override
  public void execute(){
    server.launchCommand("sudo service tomcat7 start");
  }
}
 
class StartApacheextends ServerCommand{
         
  public StartApache(Server server){
    super(server);
  }
 
  @Override
  public void execute(){
    server.launchCommand("sudo service apache2 start");
  }
}
 
// invoker
class Administrator{
         
  private ServerCommand command;
   
  public void setCommand(ServerCommand command){
    this.command = command;
  }
   
  public void typeEnter(){
    this.command.execute();
  }
         
}
 
// receiver
class Server{
         
  // as in common terminals, we store executed commands in history
  private List<String> executedCommands = new ArrayList<String>();
   
  public void launchCommand(String command){
    System.out.println("Executing: "+command+" on server");
    this.executedCommands.add(command);
  }
   
  publicList<String>getExecutedCommands(){
    return this.executedCommands;
  }
         
}

测试应通过并打印两个命令:

Executing: sudo service apache2 start on server
Executing: sudo service tomcat7 start on server

命令模式不仅允许封装请求(ServerCommand)并将其传输到接收器(Server),而且还可以更好地处理给定的请求。在这里,这种更好的处理是通过存储命令的执行历史。在Spring中,我们在beanFactory后置处理器的特性中来找到指令设计模式的原理。要通过快速对它们进行定义,应用程序上下文会启动后置处理器,并可以用来对创建的bean进行一些操作(这里不打算细说了,具体的我后面会专门写一篇这方面的文章,来分析其中的源码细节)。

当我们将先前Demo里呈现的命令逻辑转换并对比到 Spring bean工厂后处理器 时,我们可以区分以下 actors后置处理器bean (是指实现 BeanFactoryPostProcessor 接口)是命令, org.springframework.context.support.PostProcessorRegistrationDelegate 是调用者(它执行 postProcessBeanFactory 方法注册所有的后置处理器bean,此处看下面第二段代码)和接收器 org.springframework.beans.factory.config.ConfigurableListableBeanFactory 可以在元素(bean)构造初始化之前修改它们(例如:在初始化bean之前可以更改属性)。

另外,回顾下上面的那个Demo,和我们的Demo中的命令历史管理一样。 PostProcessorRegistrationDelegate 包含一个内部类 BeanPostProcessorChecker ,它可以记录当一个bean不符合处理条件的情况。

可以观察 PostProcessorRegistrationDelegate 中的两段代码:

/**
	 * BeanPostProcessor that logs an info message when a bean is created during
	 * BeanPostProcessor instantiation, i.e. when a bean is not eligible for
	 * getting processed by all BeanPostProcessors.
	 */
	private static class BeanPostProcessorCheckerimplements BeanPostProcessor{

		private static final Log logger = LogFactory.getLog(BeanPostProcessorChecker.class);

		private final ConfigurableListableBeanFactory beanFactory;

		private final int beanPostProcessorTargetCount;

		public BeanPostProcessorChecker(ConfigurableListableBeanFactory beanFactory,intbeanPostProcessorTargetCount){
			this.beanFactory = beanFactory;
			this.beanPostProcessorTargetCount = beanPostProcessorTargetCount;
		}

		@Override
		publicObjectpostProcessBeforeInitialization(Object bean, String beanName){
			return bean;
		}

		@Override
		publicObjectpostProcessAfterInitialization(Object bean, String beanName){
			if (bean != null && !(bean instanceof BeanPostProcessor) && !isInfrastructureBean(beanName) &&
					this.beanFactory.getBeanPostProcessorCount() < this.beanPostProcessorTargetCount) {
				if (logger.isInfoEnabled()) {
					logger.info("Bean '" + beanName + "' of type [" + bean.getClass() +
							"] is not eligible for getting processed by all BeanPostProcessors " +
							"(for example: not eligible for auto-proxying)");
				}
			}
			return bean;
		}

		private boolean isInfrastructureBean(String beanName){
			if (beanName != null && this.beanFactory.containsBeanDefinition(beanName)) {
				BeanDefinition bd = this.beanFactory.getBeanDefinition(beanName);
				return RootBeanDefinition.ROLE_INFRASTRUCTURE == bd.getRole();
			}
			return false;
		}
	}

定义后的调用,用的就是 ConfigurableListableBeanFactory 的实例(看 BeanPostProcessorChecker 注释):

public static void registerBeanPostProcessors(
			ConfigurableListableBeanFactory beanFactory, AbstractApplicationContext applicationContext) {

		String[] postProcessorNames = beanFactory.getBeanNamesForType(BeanPostProcessor.class, true, false);

		// Register BeanPostProcessorChecker that logs an info message when
		// a bean is created during BeanPostProcessor instantiation, i.e. when
		// a bean is not eligible for getting processed by all BeanPostProcessors.
		int beanProcessorTargetCount = beanFactory.getBeanPostProcessorCount() + 1 + postProcessorNames.length;
  //BeanPostProcessorChecker
		beanFactory.addBeanPostProcessor(new BeanPostProcessorChecker(beanFactory, beanProcessorTargetCount));

		// Separate between BeanPostProcessors that implement PriorityOrdered,
		// Ordered, and the rest.
		List<BeanPostProcessor> priorityOrderedPostProcessors = new ArrayList<>();
		List<BeanPostProcessor> internalPostProcessors = new ArrayList<>();
		List<String> orderedPostProcessorNames = new ArrayList<>();
		List<String> nonOrderedPostProcessorNames = new ArrayList<>();
		for (String ppName : postProcessorNames) {
			if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) {
				BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
				priorityOrderedPostProcessors.add(pp);
				if (pp instanceof MergedBeanDefinitionPostProcessor) {
					internalPostProcessors.add(pp);
				}
			}
			else if (beanFactory.isTypeMatch(ppName, Ordered.class)) {
				orderedPostProcessorNames.add(ppName);
			}
			else {
				nonOrderedPostProcessorNames.add(ppName);
			}
		}

		// First, register the BeanPostProcessors that implement PriorityOrdered.
		sortPostProcessors(beanFactory, priorityOrderedPostProcessors);
		registerBeanPostProcessors(beanFactory, priorityOrderedPostProcessors);

		// Next, register the BeanPostProcessors that implement Ordered.
		List<BeanPostProcessor> orderedPostProcessors = new ArrayList<>();
		for (String ppName : orderedPostProcessorNames) {
			BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
			orderedPostProcessors.add(pp);
			if (pp instanceof MergedBeanDefinitionPostProcessor) {
				internalPostProcessors.add(pp);
			}
		}
		sortPostProcessors(beanFactory, orderedPostProcessors);
		registerBeanPostProcessors(beanFactory, orderedPostProcessors);

		// Now, register all regular BeanPostProcessors.
		List<BeanPostProcessor> nonOrderedPostProcessors = new ArrayList<>();
		for (String ppName : nonOrderedPostProcessorNames) {
			BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
			nonOrderedPostProcessors.add(pp);
			if (pp instanceof MergedBeanDefinitionPostProcessor) {
				internalPostProcessors.add(pp);
			}
		}
		registerBeanPostProcessors(beanFactory, nonOrderedPostProcessors);

		// Finally, re-register all internal BeanPostProcessors.
		sortPostProcessors(beanFactory, internalPostProcessors);
		registerBeanPostProcessors(beanFactory, internalPostProcessors);

		// Re-register post-processor for detecting inner beans as ApplicationListeners,
		// moving it to the end of the processor chain (for picking up proxies etc).
		beanFactory.addBeanPostProcessor(new ApplicationListenerDetector(applicationContext));
	}

总结一个过程就是,我要BeanFactory里面得到对象(也就是为了得到一个命令的执行结果),那么,想要在得到对象的时候就已经实现了一些对其修改的想法,那么就通过后置处理器,也是就实现了后置处理器接口的beans(命令里可以通过传入不同的参数来得到不同结果,或者对命令的脚本进行修改),然后还需要一个执行者(我们在做自动化运维的时候,不止操作一个脚本,这里的 PostProcessorRegistrationDelegate 就是集中来管理这些的),最后得到的结果就由 BeanFactory 来展示咯。

访问者模式

接下来要介绍的一个行为设计模式是 Visitor :抽象一点就是通过另一种类型的对象来使一个对象访问。在这个简短定义中,使用这个设计模式中的对象将被视为访问者或对象可被访问。第一个访问者要有可访问支持。这个模式的一个现实的例子可以是一个汽车质检员,他们检查一些汽车零件,比如轮子,制动器和发动机,以判断汽车质量是否合格。我们来做个JUnit测试用例:

public class VisitorTest{
 
  @Test
  public void test(){
    CarComponent car = new Car();
    Mechanic mechanic = new QualifiedMechanic();
    car.accept(mechanic);
    assertTrue("After qualified mechanics visit, the car should be broken",
      car.isBroken());
    Mechanic nonqualifiedMechanic = new NonQualifiedMechanic();
    car.accept(nonqualifiedMechanic);
    assertFalse("Car shouldn't be broken becase non qualified mechanic " +
      " can't see breakdowns", car.isBroken());
  }
 
}
 
// visitor
interface Mechanic{
  public void visit(CarComponent element);
  publicStringgetName();
}
 
class QualifiedMechanicimplements Mechanic{
 
  @Override
  public void visit(CarComponent element){
    element.setBroken(true);
  }
 
  @Override
  publicStringgetName(){
    return "qualified";
  }
}
 
class NonQualifiedMechanicimplements Mechanic{
         
  @Override
  public void visit(CarComponent element){
    element.setBroken(true);
  }
   
  @Override
  publicStringgetName(){
    return "unqualified";
  }
}
 
// visitable
abstract class CarComponent{
  protected boolean broken;
 
  public abstract void accept(Mechanic mechanic);
   
  public void setBroken(booleanbroken){
    this.broken = broken;
  }
   
  public boolean isBroken(){
    return this.broken;
  }
}
 
class Carextends CarComponent{
 
  private boolean broken = false;
  private CarComponent[] components;
   
  public Car(){
    components = new CarComponent[] {
      new Wheels(), new Engine(), new Brake()
    };
  }
   
  @Override
  public void accept(Mechanic mechanic){
    this.broken = false;
    if (mechanic.getName().equals("qualified")) {
      int i = 0;
      while (i < components.length && this.broken == false) {
        CarComponent component = components[i];
        mechanic.visit(component);
        this.broken = component.isBroken();
        i++;
      }
    }
    // if mechanic isn't qualified, we suppose that
    // he isn't able to see breakdowns and so
    // he considers the car as no broken
    // (even if the car is broken)
  }
 
  @Override
  public boolean isBroken(){
          return this.broken;
  }
}
 
class Wheelsextends CarComponent{
 
  @Override
  public void accept(Mechanic mechanic){
    mechanic.visit(this);
  }
}
 
class Engineextends CarComponent{
 
  @Override
  public void accept(Mechanic mechanic){
    mechanic.visit(this);
  }
}
 
class Brakeextends CarComponent{
 
  @Override
  public void accept(Mechanic mechanic){
    mechanic.visit(this);
  }
}

在这个例子中,我们可以看到他们有两个机制(访问者,其实就是免检和不免检):合格和不合格。暴露于他们的可见对象是汽车。通过其接受方式,决定哪个角色应该适用于被访问者(通过代码 mechanic.getName().equals("qualified") 来判断)。当访问者合格时,Car让他分析所有组件。如果访问者不合格,Car认为其干预是无用的,并且在方法 isBroken() 中直接返回 false (其实就是为了达到一个免检的效果)。 Spring在beans配置中实现了访问者设计模式 。为了观察,我们可以看看 org.springframework.beans.factory.config.BeanDefinitionVisitor 对象,该对象用于 解析bean元数据 并将其解析为 String (例如:具有作用域或工厂方法名称的XML属性)或 Object (例如:构造函数定义中的参数)。已解析的值在与分析的bean关联的 BeanDefinition 实例中进行判断设置。具体的源码请看 BeanDefinitionVisitor 的代码片段:

/**
 * Traverse the given BeanDefinition object and the MutablePropertyValues
 * and ConstructorArgumentValues contained in them.
 * @param beanDefinition the BeanDefinition object to traverse
 * @see #resolveStringValue(String)
 */
public void visitBeanDefinition(BeanDefinition beanDefinition){
  visitParentName(beanDefinition);
  visitBeanClassName(beanDefinition);
  visitFactoryBeanName(beanDefinition);
  visitFactoryMethodName(beanDefinition);
  visitScope(beanDefinition);
  visitPropertyValues(beanDefinition.getPropertyValues());
  ConstructorArgumentValues cas = beanDefinition.
    getConstructorArgumentValues();
  visitIndexedArgumentValues(cas.
    getIndexedArgumentValues());
  visitGenericArgumentValues(cas.
    getGenericArgumentValues());
}
 
protected void visitParentName(BeanDefinition beanDefinition){
  String parentName = beanDefinition.getParentName();
  if (parentName != null) {
    String resolvedName = resolveStringValue(parentName);
    if (!parentName.equals(resolvedName)) {
      beanDefinition.setParentName(resolvedName);
    }
  }
}

在这种情况下,他们只是访问方式,没有对访问者做任何补充的控制(在Demo里对car的质检员做了控制)。这里访问包括分析给定 BeanDefinition 的参数,并将其替换为已解析对象。

在最后一篇关于Spring中设计模式的文章中,我们发现了2种行为模式: 用于处理bean工厂的后置处理的命令模式用于将定义的bean参数转换为面向对象(String或Object的实例)参数的访问者模式

原文  https://muyinchen.github.io/2017/08/01/Spring框架中的设计模式(五)/
正文到此结束
Loading...