关注 微信公众号:【芋道源码】 有福利:
本文主要分享 RateLimiter 的代码实现和 RateLimiter 在 Eureka 中的应用 。
com.netflix.discovery.util.RateLimiter
,基于 Token Bucket Algorithm ( 令牌桶算法 ) 的速率限制器。
FROM 《接口限流实践》
令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。
RateLimiter 目前支持 分钟级 和 秒级 两种速率限制。构造方法如下:
public class RateLimiter{ /** * 速率单位转换成毫秒 */ private final long rateToMsConversion; public RateLimiter(TimeUnit averageRateUnit){ switch (averageRateUnit) { case SECONDS: // 秒级 rateToMsConversion = 1000; break; case MINUTES: // 分钟级 rateToMsConversion = 60 * 1000; break; default: throw new IllegalArgumentException("TimeUnit of " + averageRateUnit + " is not supported"); } } }
averageRateUnit
参数,速率 单位 。构造方法里将 averageRateUnit
转换成 rateToMsConversion
。 调用 #acquire(...)
方法,获取令牌,并返回 是否获取成功
// RateLimiter.java /** * 获取令牌( Token ) * * @param burstSize 令牌桶上限 * @param averageRate 令牌再装平均速率 * @return 是否获取成功 */ public boolean acquire(int burstSize, long averageRate){ return acquire(burstSize, averageRate, System.currentTimeMillis()); } public boolean acquire(int burstSize, long averageRate, long currentTimeMillis){ if (burstSize <= 0 || averageRate <= 0) { // Instead of throwing exception, we just let all the traffic go return true; } // 填充 令牌 refillToken(burstSize, averageRate, currentTimeMillis); // 消费 令牌 return consumeToken(burstSize); }
burstSize
参数 :令牌桶上限。 averageRate
参数 :令牌填充 平均 速率。 averageRateUnit = SECONDS
averageRate = 2000
burstSize = 10
2000
个令牌。例如,每秒允许请求 2000
次。 2000 / 1000 = 2
个 消耗 的令牌。 10
个令牌。例如,每毫秒允许请求上限为 10
次,并且请求 消耗 掉的令牌,需要逐步填充。这里要注意下,虽然每毫秒允许请求上限为 10
次,这是在没有任何令牌被 消耗 的情况下,实际每秒允许请求依然是 2000
次。 从代码上看, #acquire(...)
分成两部分,我们分别解析,整体如下图:
调用 #refillToken(...)
方法,填充 已消耗 的令牌。可能很多同学开始和我想的一样,一个后台每毫秒执行填充。 为什么不适合这样呢? 一方面,实际项目里每个接口都会有相应的 RateLimiter ,导致 太多 执行频率 极高 的后台任务;另一方面,获取令牌时才计算,多次令牌填充可以合并成一次,减少冗余和无效的计算。
代码如下:
1: /** 2: * 速率单位转换成毫秒 3: */ 4: private final long rateToMsConversion; 5: 6: /** 7: * 消耗令牌数 8: */ 9: private final AtomicInteger consumedTokens = new AtomicInteger(); 10: /** 11: * 最后填充令牌的时间 12: */ 13: private final AtomicLong lastRefillTime = new AtomicLong(0); 14: 15: private void refillToken(int burstSize, long averageRate, long currentTimeMillis){ 16: // 获得 最后填充令牌的时间 17: long refillTime = lastRefillTime.get(); 18: // 获得 过去多少毫秒 19: long timeDelta = currentTimeMillis - refillTime; 20: 21: // 计算 可填充最大令牌数量 22: long newTokens = timeDelta * averageRate / rateToMsConversion; 23: if (newTokens > 0) { 24: // 计算 新的填充令牌的时间 25: long newRefillTime = refillTime == 0 26: ? currentTimeMillis 27: : refillTime + newTokens * rateToMsConversion / averageRate; 28: // CAS 保证有且仅有一个线程进入填充 29: if (lastRefillTime.compareAndSet(refillTime, newRefillTime)) { 30: while (true) { // 死循环,直到成功 31: // 计算 填充令牌后的已消耗令牌数量 32: int currentLevel = consumedTokens.get(); 33: int adjustedLevel = Math.min(currentLevel, burstSize); // In case burstSize decreased 34: int newLevel = (int) Math.max(0, adjustedLevel - newTokens); 35: // CAS 避免和正在消费令牌的线程冲突 36: if (consumedTokens.compareAndSet(currentLevel, newLevel)) { 37: return; 38: } 39: } 40: } 41: } 42: }
refillTime
) 。每次填充令牌,会设置 currentTimeMillis
到 refillTime
。 timeDelta
),用于计算需要填充的令牌数。 newTokens
)。 newTokens
可能超过 burstSize
,所以下面会有逻辑调整 newTokens
。 currentTimeMillis
呢 ?例如, averageRate = 500 && averageRateUnit = SECONDS
时, 每 2 毫秒才填充一个令牌,如果设置 currentTimeMillis
, 会导致不足以填充一个令牌的时长被吞了 。 burstSize
可能调小,例如,系统接入分布式配置中心,可以远程调整该数值。如果此时 burstSize
更小,以它作为 已消耗 的令牌数量。 用 #refillToken(...)
方法,填充 消耗( 获取 ) 的令牌。
代码如下 :
1: private boolean consumeToken(int burstSize){ 2: while (true) { // 死循环,直到没有令牌,或者获取令牌成功 3: // 没有令牌 4: int currentLevel = consumedTokens.get(); 5: if (currentLevel >= burstSize) { 6: return false; 7: } 8: // CAS 避免和正在消费令牌或者填充令牌的线程冲突 9: if (consumedTokens.compareAndSet(currentLevel, currentLevel + 1)) { 10: return true; 11: } 12: } 13: }
com.netflix.eureka.RateLimitingFilter
,Eureka-Server 限流过滤器。使用 RateLimiting ,保证 Eureka-Server 稳定性。
#doFilter(...)
方法,代码如下:
1: @Override 2: public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException{ 3: // 获得 Target 4: Target target = getTarget(request); 5: 6: // Other Target ,不做限流 7: if (target == Target.Other) { 8: chain.doFilter(request, response); 9: return; 10: } 11: 12: HttpServletRequest httpRequest = (HttpServletRequest) request; 13: // 判断是否被限流 14: if (isRateLimited(httpRequest, target)) { 15: // TODO[0012]:监控相关,跳过 16: incrementStats(target); 17: // 如果开启限流,返回 503 状态码 18: if (serverConfig.isRateLimiterEnabled()) { 19: ((HttpServletResponse) response).setStatus(HttpServletResponse.SC_SERVICE_UNAVAILABLE); 20: return; 21: } 22: } 23: chain.doFilter(request, response); 24: }
#getTarget()
方法,获取 Target。RateLimitingFilter 只对符合正在表达式 ^.*/apps(/[^/]*)?$
的接口做限流,其中不包含 Eureka-Server 集群批量同步接口。
#getTarget(...)
方法代码。 第 14 行 :调用 #isRateLimited(...)
方法,判断是否被限流。代码如下:
1: private boolean isRateLimited(HttpServletRequest request, Target target){ 2: // 判断是否特权应用 3: if (isPrivileged(request)) { 4: logger.debug("Privileged {} request", target); 5: return false; 6: } 7: // 判断是否被超载( 限流 ) 8: if (isOverloaded(target)) { 9: logger.debug("Overloaded {} request; discarding it", target); 10: return true; 11: } 12: logger.debug("{} request admitted", target); 13: return false; 14: }
第 3 至 6 行 :调用 #isPrivileged()
方法,判断是否为特权应用,对特权应用不开启限流逻辑。代码如下:
private boolean isPrivileged(HttpServletRequest request){ // 是否对标准客户端开启限流 if (serverConfig.isRateLimiterThrottleStandardClients()) { return false; } // 以请求头( "DiscoveryIdentity-Name" ) 判断是否在标准客户端名集合内 Set<String> privilegedClients = serverConfig.getRateLimiterPrivilegedClients(); String clientName = request.getHeader(AbstractEurekaIdentity.AUTH_NAME_HEADER_KEY); return privilegedClients.contains(clientName) || DEFAULT_PRIVILEGED_CLIENTS.contains(clientName); }
第 8 至 11 行 :调用 #isOverloaded(...)
方法,判断是否超载( 限流 )。代码如下:
/** * Includes both full and delta fetches. */ private static final RateLimiter registryFetchRateLimiter = new RateLimiter(TimeUnit.SECONDS); /** * Only full registry fetches. */ private static final RateLimiter registryFullFetchRateLimiter = new RateLimiter(TimeUnit.SECONDS); private boolean isOverloaded(Target target){ int maxInWindow = serverConfig.getRateLimiterBurstSize(); // 10 int fetchWindowSize = serverConfig.getRateLimiterRegistryFetchAverageRate(); // 500 boolean overloaded = !registryFetchRateLimiter.acquire(maxInWindow, fetchWindowSize); if (target == Target.FullFetch) { int fullFetchWindowSize = serverConfig.getRateLimiterFullFetchAverageRate(); // 100 overloaded |= !registryFullFetchRateLimiter.acquire(maxInWindow, fullFetchWindowSize); } return overloaded; }
第 18 至 21 行 :若 eureka.rateLimiter.enabled = true
( 默认值 : false
,可配 ),返回 503 状态码。
com.netflix.discovery.InstanceInfoReplicator
,Eureka-Client 应用实例复制器。在 《Eureka 源码解析 —— 应用实例注册发现(一)之注册》「2.1 应用实例信息复制器」 有详细解析。
应用实例状态发生变化时,调用 #onDemandUpdate()
方法,向 Eureka-Server 发起注册,同步应用实例信息。InstanceInfoReplicator 使用 RateLimiter ,避免状态 频繁 发生变化,向 Eureka-Server 频繁 同步。代码如下:
class InstanceInfoReplicator implements Runnable{ /** * RateLimiter */ private final RateLimiter rateLimiter; /** * 令牌桶上限,默认:2 */ private final int burstSize; /** * 令牌再装平均速率,默认:60 * 2 / 30 = 4 */ private final int allowedRatePerMinute; InstanceInfoReplicator(DiscoveryClient discoveryClient, InstanceInfo instanceInfo, int replicationIntervalSeconds, int burstSize) { // ... 省略其他代码 this.rateLimiter = new RateLimiter(TimeUnit.MINUTES); this.replicationIntervalSeconds = replicationIntervalSeconds; this.burstSize = burstSize; this.allowedRatePerMinute = 60 * this.burstSize / this.replicationIntervalSeconds; logger.info("InstanceInfoReplicator onDemand update allowed rate per min is {}", allowedRatePerMinute); } public boolean onDemandUpdate(){ if (rateLimiter.acquire(burstSize, allowedRatePerMinute)) { // 限流 scheduler.submit(new Runnable() { @Override public void run(){ logger.debug("Executing on-demand update of local InstanceInfo"); // 取消任务 Future latestPeriodic = scheduledPeriodicRef.get(); if (latestPeriodic != null && !latestPeriodic.isDone()) { logger.debug("Canceling the latest scheduled update, it will be rescheduled at the end of on demand update"); latestPeriodic.cancel(false); } // 再次调用 InstanceInfoReplicator.this.run(); } }); return true; } else { logger.warn("Ignoring onDemand update due to rate limiter"); return false; } } }
#onDemandUpdate()
方法,调用 RateLimiter#acquire(...)
方法,获取令牌。
lastDirtyTimestamp
,若 Eureka-Client 的更大,则 Eureka-Server 返回 404 状态码。Eureka-Client 接收到 404 状态码后,发起注册同步。在 Eureka 源码解析 —— 应用实例注册发现(二)之续租》「2.2 HeartbeatThread」 有详细解析。 后面找时间研究下 Google Guava RateLimiter 的源码实现,从功能上更加强大,感兴趣的胖友可以瞅瞅呀。
胖友,分享我的公众号( 芋道源码 ) 给你的胖友可好?