戳上面的蓝字关注我们哦!
精彩内容
精选java等全套视频教程
精选java电子图书
大数据视频教程精选
java项目练习精选
概要
前面,我们已经学习了ArrayList。接下来,我们以ArrayList为例,对Iterator的fail-fast机制进行了解。
fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生fail-fast事件。
例如:当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
在详细介绍fail-fast机制的原理之前,先通过一个示例来认识fail-fast。
示例代码:(FastFailTest.java)
import java.util.*; import java.util.concurrent.*; /* * @desc java集合中Fast-Fail的测试程序。 * * fast-fail事件产生的条件:当多个线程对Collection进行操作时,若其中某一个线程通过iterator去遍历集合时,该集合的内容被其他线程所改变;则会抛出ConcurrentModificationException异常。 * fast-fail解决办法:通过util.concurrent集合包下的相应类去处理,则不会产生fast-fail事件。 * * 本例中,分别测试ArrayList和CopyOnWriteArrayList这两种情况。ArrayList会产生fast-fail事件,而CopyOnWriteArrayList不会产生fast-fail事件。 * (01) 使用ArrayList时,会产生fast-fail事件,抛出ConcurrentModificationException异常;定义如下: * private static List<String> list = new ArrayList<String>(); * (02) 使用时CopyOnWriteArrayList,不会产生fast-fail事件;定义如下: * private static List<String> list = new CopyOnWriteArrayList<String>(); * * @author skywang */ public class FastFailTest { private static List<String> list = new ArrayList<String>(); //private static List<String> list = new CopyOnWriteArrayList<String>(); public static void main(String[] args) { // 同时启动两个线程对list进行操作! new ThreadOne().start(); new ThreadTwo().start(); } private static void printAll() { System.out.println(""); String value = null; Iterator iter = list.iterator(); while(iter.hasNext()) { value = (String)iter.next(); System.out.print(value+", "); } } /** * 向list中依次添加0,1,2,3,4,5,每添加一个数之后,就通过printAll()遍历整个list */ private static class ThreadOne extends Thread { public void run() { int i = 0; while (i<6) { list.add(String.valueOf(i)); printAll(); i++; } } } /** * 向list中依次添加10,11,12,13,14,15,每添加一个数之后,就通过printAll()遍历整个list */ private static class ThreadTwo extends Thread { public void run() { int i = 10; while (i<16) { list.add(String.valueOf(i)); printAll(); i++; } } } }
运行该代码,抛出异常java.util.ConcurrentModificationException!即,产生fail-fast事件!
结果说明:
(01) FastFailTest中通过 new ThreadOne().start() 和 new ThreadTwo().start() 同时启动两个线程去操作list。
ThreadOne线程: 向list中依次添加0,1,2,3,4,5。每添加一个数之后,就通过printAll()遍历整个list。
ThreadTwo线程: 向list中依次添加10,11,12,13,14,15。每添加一个数之后,就通过printAll()遍历整个list。
(02) 当某一个线程遍历list的过程中,list的内容被另外一个线程所改变了;就会抛出ConcurrentModificationException异常,产生fail-fast事件。
fail-fast机制,是一种错误检测机制。 它只能被用来检测错误,因为JDK并不保证fail-fast机制一定会发生。 若在多线程环境下使用fail-fast机制的集合,建议使用“java.util.concurrent包下的类”去取代“java.util包下的类”。
所以,本例中只需要将ArrayList替换成java.util.concurrent包下对应的类即可。
即,将代码
private static List<String> list = new ArrayList<String>();
替换为
private static List<String> list = new CopyOnWriteArrayList<String>();
则可以解决该办法。
产生fail-fast事件,是通过抛出ConcurrentModificationException异常来触发的。
那么,ArrayList是如何抛出ConcurrentModificationException异常的呢?
我们知道,ConcurrentModificationException是在操作Iterator时抛出的异常。我们先看看Iterator的源码。ArrayList的Iterator是在父类AbstractList.java中实现的。代码如下:
public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> { ... // AbstractList中唯一的属性 // 用来记录List修改的次数:每修改一次(添加/删除等操作),将modCount+1 protected transient int modCount = 0; // 返回List对应迭代器。实际上,是返回Itr对象。 public Iterator<E> iterator() { return new Itr(); } // Itr是Iterator(迭代器)的实现类 private class Itr implements Iterator<E> { int cursor = 0; int lastRet = -1; // 修改数的记录值。 // 每次新建Itr()对象时,都会保存新建该对象时对应的modCount; // 以后每次遍历List中的元素的时候,都会比较expectedModCount和modCount是否相等; // 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。 int expectedModCount = modCount; public boolean hasNext() { return cursor != size(); } public E next() { // 获取下一个元素之前,都会判断“新建Itr对象时保存的modCount”和“当前的modCount”是否相等; // 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。 checkForComodification(); try { E next = get(cursor); lastRet = cursor++; return next; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public void remove() { if (lastRet == -1) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.remove(lastRet); if (lastRet < cursor) cursor--; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException e) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } ... }
从中,我们可以发现在调用 next() 和 remove()时,都会执行 checkForComodification()。若 “ modCount 不等于 expectedModCount ”,则抛出ConcurrentModificationException异常,产生fail-fast事件。
要搞明白 fail-fast机制,我们就要需要理解什么时候“modCount 不等于 expectedModCount”!
从Itr类中,我们知道 expectedModCount 在创建Itr对象时,被赋值为 modCount。通过Itr,我们知道:expectedModCount不可能被修改为不等于 modCount。所以,需要考证的就是modCount何时会被修改。
接下来,我们查看ArrayList的源码,来看看modCount是如何被修改的。
package java.util; public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { ... // list中容量变化时,对应的同步函数 public void ensureCapacity(int minCapacity) { modCount++; int oldCapacity = elementData.length; if (minCapacity > oldCapacity) { Object oldData[] = elementData; int newCapacity = (oldCapacity * 3)/2 + 1; if (newCapacity < minCapacity) newCapacity = minCapacity; // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } } // 添加元素到队列最后 public boolean add(E e) { // 修改modCount ensureCapacity(size + 1); // Increments modCount!! elementData[size++] = e; return true; } // 添加元素到指定的位置 public void add(int index, E element) { if (index > size || index < 0) throw new IndexOutOfBoundsException( "Index: "+index+", Size: "+size); // 修改modCount ensureCapacity(size+1); // Increments modCount!! System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } // 添加集合 public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; // 修改modCount ensureCapacity(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } // 删除指定位置的元素 public E remove(int index) { RangeCheck(index); // 修改modCount modCount++; E oldValue = (E) elementData[index]; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work return oldValue; } // 快速删除指定位置的元素 private void fastRemove(int index) { // 修改modCount modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work } // 清空集合 public void clear() { // 修改modCount modCount++; // Let gc do its work for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } ... }
从中,我们发现:无论是add()、remove(),还是clear(),只要涉及到修改集合中的元素个数时,都会改变modCount的值。
接下来,我们再系统的梳理一下fail-fast是怎么产生的。步骤如下:
(01) 新建了一个ArrayList,名称为arrayList。
(02) 向arrayList中添加内容。
(03) 新建一个“ 线程a ”,并在“线程a”中 通过Iterator反复的读取arrayList的值 。
(04) 新建一个“ 线程b ”,在“线程b”中 删除arrayList中的一个“节点A” 。
(05) 这时,就会产生有趣的事件了。
在某一时刻,“线程a”创建了arrayList的Iterator。此时“节点A”仍然存在于arrayList中, 创建arrayList时,expectedModCount = modCount(假设它们此时的值为N) 。
在“线程a”在遍历arrayList过程中的某一时刻,“线程b”执行了,并且“线程b”删除了arrayList中的“节点A”。“线程b”执行remove()进行删除操作时,在remove()中执行了“modCount++”,此时 modCount变成了N+1 !
“线程a”接着遍历,当它执行到next()函数时,调用checkForComodification()比较“expectedModCount”和“modCount”的大小;而“expectedModCount=N”,“modCount=N+1”,这样,便抛出ConcurrentModificationException异常,产生fail-fast事件。
至此, 我们就完全了解了fail-fast是如何产生的 !
即,当多个线程对同一个集合进行操作的时候,某线程访问集合的过程中,该集合的内容被其他线程所改变(即其它线程通过add、remove、clear等方法,改变了modCount的值);这时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
上面,说明了“解决fail-fast机制的办法”,也知道了“fail-fast产生的根本原因”。接下来,我们再进一步谈谈java.util.concurrent包中是如何解决fail-fast事件的。
还是以和ArrayList对应的CopyOnWriteArrayList进行说明。我们先看看CopyOnWriteArrayList的源码:
package java.util.concurrent; import java.util.*; import java.util.concurrent.locks.*; import sun.misc.Unsafe; public class CopyOnWriteArrayList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { ... // 返回集合对应的迭代器 public Iterator<E> iterator() { return new COWIterator<E>(getArray(), 0); } ... private static class COWIterator<E> implements ListIterator<E> { private final Object[] snapshot; private int cursor; private COWIterator(Object[] elements, int initialCursor) { cursor = initialCursor; // 新建COWIterator时,将集合中的元素保存到一个新的拷贝数组中。 // 这样,当原始集合的数据改变,拷贝数据中的值也不会变化。 snapshot = elements; } public boolean hasNext() { return cursor < snapshot.length; } public boolean hasPrevious() { return cursor > 0; } public E next() { if (! hasNext()) throw new NoSuchElementException(); return (E) snapshot[cursor++]; } public E previous() { if (! hasPrevious()) throw new NoSuchElementException(); return (E) snapshot[--cursor]; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor-1; } public void remove() { throw new UnsupportedOperationException(); } public void set(E e) { throw new UnsupportedOperationException(); } public void add(E e) { throw new UnsupportedOperationException(); } } ... }
从中,我们可以看出:
(01) 和ArrayList继承于AbstractList不同,CopyOnWriteArrayList没有继承于AbstractList,它仅仅只是实现了List接口。
(02) ArrayList的iterator()函数返回的Iterator是在AbstractList中实现的;而CopyOnWriteArrayList是自己实现Iterator。
(03) ArrayList的Iterator实现类中调用next()时,会“调用checkForComodification()比较‘expectedModCount’和‘modCount’的大小”;但是,CopyOnWriteArrayList的Iterator实现类中,没有所谓的checkForComodification(),更不会抛出ConcurrentModificationException异常!
出处:http://www.cnblogs.com/skywang12345/p/3308762.html
java基础|html5|css|js|jquery|angularJs|ajax|node.js|javaEE基础| |struts2|hibernate|spring|svn|maven|springmvc|mybatis|linux|oracle| |luncene|solr|redis|springboot|架构师资源|dubbo|php|webservice|c++基础|nginx|mysql|sqlserver|asp.net|大数据|java项目
更多学习资源逐步更新,请置顶公众号不要错过更新
好好学java
每日推送java优质文章、视频教程、热点资讯
微信ID:sihailoveyan
长按左侧二维码关注