这篇指南为了能够帮助Java程序员快速深入了解Go语言特性!
employee.go
package employee import ( "fmt" ) type employee struct { firstName string lastName string totalLeaves int leavesTaken int } func New(firstName string, lastName string, totalLeave int, leavesTaken int) employee { e := employee {firstName, lastName, totalLeave, leavesTaken} return e } func (e *employee) LeavesRemaining() { fmt.Printf("%s %s has %d leaves remaining", e.firstName, e.lastName, (e.totalLeaves - e.leavesTaken)) }
main.go
package main import "oop/employee" func main() { e := employee.New("Sam", "Adolf", 30, 20) e.LeavesRemaining() }
Go interface
package main import "fmt" import "math" // Here's a basic interface for geometric shapes. type geometry interface { area() float64 perim() float64 } // For our example we'll implement this interface on // `rect` and `circle` types. type rect struct { width, height float64 } type circle struct { radius float64 } // To implement an interface in Go, we just need to // implement all the methods in the interface. Here we // implement `geometry` on `rect`s. func (r rect) area() float64 { return r.width * r.height } func (r rect) perim() float64 { return 2*r.width + 2*r.height } // The implementation for `circle`s. func (c circle) area() float64 { return math.Pi * c.radius * c.radius } func (c circle) perim() float64 { return 2 * math.Pi * c.radius } // If a variable has an interface type, then we can call // methods that are in the named interface. Here's a // generic `measure` function taking advantage of this // to work on any `geometry`. func measure(g geometry) { fmt.Println(g) fmt.Println(g.area()) fmt.Println(g.perim()) } func main() { r := rect{width: 3, height: 4} c := circle{radius: 5} // The `circle` and `rect` struct types both // implement the `geometry` interface so we can use // instances of // these structs as arguments to `measure`. measure(r) measure(c) }
type MyType struct { n int } func (p *MyType) Value() int { return p.n } func main() { pm := new(MyType) fmt.Println(pm.Value()) // 0 (zero value) }
type Operator func(x float64) float64 // Map applies op to each element of a. func Map(op Operator, a []float64) []float64 { res := make([]float64, len(a)) for i, x := range a { res[i] = op(x) } return res } func main() { op := math.Abs a := []float64{1, -2} b := Map(op, a) fmt.Println(b) // [1 2] c := Map(func(x float64) float64 { return 10 * x }, b) fmt.Println(c) // [10, 20] }
func Slice(slice interface{}, less func(i, j int) bool) people := []string{"Alice", "Bob", "Dave"} sort.Slice(people, func(i, j int) bool { return len(people[i]) < len(people[j]) }) fmt.Println(people) // Output: [Bob Dave Alice] // OR people := []string{"Alice", "Bob", "Dave"} less := func(i, j int) bool { return len(people[i]) < len(people[j]) } sort.Slice(people, less) // Count prints the number of times it has been invoked. func New() (Count func()) { n := 0 return func() { n++ fmt.Println(n) } } func main() { f1, f2 := New(), New() f1() // 1 f2() // 1 (different n) f1() // 2 f2() // 2 }
type Student struct { Name string } var ps *Student = new(Student) // ps holds the address of the new struct ps := new(Student) s := Student{"Alice"} // s holds the actual struct ps := &s // ps holds the address of the struct // Bob is a function that has no effect. func Bob(s Student) { s.Name = "Bob" // changes only the local copy } // Charlie sets pp.Name to "Charlie". func Charlie(ps *Student) { ps.Name = "Charlie" } func main() { s := Student{"Alice"} Bob(s) fmt.Println(s) // prints {Alice} Charlie(&s) fmt.Println(s) // prints {Charlie} }
type error interface { Error() string } f, err := os.Open("filename.ext") if err != nil { log.Fatal(err) } // coustome error err := errors.New("Houston, we have a problem")
并发
回归Sina SAE