原文地址:cnblogs.com/liuyun1995/p/8474026.html 作者:劳夫子
Semaphore(信号量)用来控制同时访问特定资源的线程数量,它通过协调各个线程,以保证合理的使用公共资源。
Semaphore提供了一个许可证的概念,可以把这个许可证看作公共汽车车票,只有成功获取车票的人才能够上车,并且车票是有一定数量的,不可能毫无限制的发下去,这样就会导致公交车超载。所以当车票发完的时候(公交车以满载),其他人就只能等下一趟车了。如果中途有人下车,那么他的位置将会空闲出来,因此如果这时其他人想要上车的话就又可以获得车票了。
Semaphore类提供了2种构造函数,分别如下:
public Semaphore(int permits) { sync = new NonfairSync(permits); } public Semaphore(int permits, boolean fair) { sync = fair ? new FairSync(permits) : new NonfairSync(permits); }
这两个构造方法,都必须提供许可的数量,第二个构造方法可以指定是公平模式还是非公平模式,默认非公平模式。
在ReentrantLock中公平锁和非公平锁获取锁机制的差别:对于公平锁而言,如果当前线程不在CLH队列的头部,则需要排队等候,而非公平锁则不同,它无论当前线程处于CLH队列的何处都会直接获取锁。所以公平信号量和非公平信号量的区别也一样。
Semaphore类提供了4种获取许可证的方法,分别如下:
//获取一个许可证(响应中断),在没有可用的许可证时当前线程被阻塞。 public void acquire() throws InterruptedException { sync.acquireSharedInterruptibly(1); } //获取一个许可证(不响应中断) public void acquireUninterruptibly() { sync.acquireShared(1); } //尝试获取许可证(非公平获取),立即返回结果(非阻塞)。 public boolean tryAcquire() { return sync.nonfairTryAcquireShared(1) >= 0; } //尝试获取许可证(定时获取) public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); }
下面我们一起看看,acquire()是如何获取许可证的? 其源码如下:
public void acquire() throws InterruptedException { sync.acquireSharedInterruptibly(1); } public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); if (tryAcquireShared(arg) < 0) doAcquireSharedInterruptibly(arg); }
acquireSharedInterruptibly方法首先就是去调用tryAcquireShared方法去尝试获取,tryAcquireShared在AQS里面是抽象方法,FairSync和NonfairSync这两个派生类实现了该方法的逻辑。FairSync实现的是公平获取的逻辑,而NonfairSync实现的非公平获取的逻辑。
abstract static class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 1192457210091910933L; Sync(int permits) { setState(permits); } final int getPermits() { return getState(); } // 非公平方式尝试获取 final int nonfairTryAcquireShared(int acquires) { for (;;) { // 获取可用许可证 int available = getState(); // 获取剩余许可证 int remaining = available - acquires; // 1.如果remaining小于0则直接返回remaining // 2.如果remaining大于0则先更新同步状态再返回remaining if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } protected final boolean tryReleaseShared(int releases) { for (;;) { int current = getState(); int next = current + releases; if (next < current) // overflow throw new Error("Maximum permit count exceeded"); if (compareAndSetState(current, next)) return true; } } final void reducePermits(int reductions) { for (;;) { int current = getState(); int next = current - reductions; if (next > current) // underflow throw new Error("Permit count underflow"); if (compareAndSetState(current, next)) return; } } final int drainPermits() { for (;;) { int current = getState(); if (current == 0 || compareAndSetState(current, 0)) return current; } } } // 非公平同步器 static final class NonfairSync extends Sync { private static final long serialVersionUID = -2694183684443567898L; NonfairSync(int permits) { super(permits); } // 尝试获取许可证 protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires); } } // 公平同步器 static final class FairSync extends Sync { private static final long serialVersionUID = 2014338818796000944L; FairSync(int permits) { super(permits); } // 尝试获取许可证 protected int tryAcquireShared(int acquires) { for (;;) { // 判断同步队列前面存在排队 if (hasQueuedPredecessors()) return -1; int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } }
非公平获取锁的逻辑是先取出当前同步状态(同步状态表示许可证个数),将当前同步状态减去参入的参数,如果结果不小于0的话证明还有可用的许可证,那么就直接使用CAS操作更新同步状态的值,最后不管结果是否小于0都会返回该结果值。
公平获取锁的逻辑仅仅是在此之前先去调用hasQueuedPredecessors方法判断同步队列是否存在排队,如果有的话就直接返回-1表示获取失败,否则继续执行和非公平获取一样的步骤。
Semaphore类提供了2种释放许可证方法,分别如下:
public void release() { sync.releaseShared(1); } public void release(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.releaseShared(permits); }
调用release方法是释放一个许可证,它的操作很简单,就调用了AQS的releaseShared方法。
//释放锁的操作(共享模式) public final boolean releaseShared(int arg) { //1.尝试去释放锁 if (tryReleaseShared(arg)) { //2.如果释放成功就唤醒其他线程 doReleaseShared(); return true; } return false; }
AQS的releaseShared方法首先调用tryReleaseShared方法尝试释放锁,其实现逻辑在子类Sync里面。
// 尝试释放操作 protected final boolean tryReleaseShared(int releases) { for (;;) { // 获取当前同步状态 int current = getState(); // 将当前同步状态加上传入的参数 int next = current + releases; if (next < current) // overflow throw new Error("Maximum permit count exceeded"); // 以CAS方式更新同步状态的值, 更新成功则返回true, 否则继续循环 if (compareAndSetState(current, next)) return true; } }
tryReleaseShared方法里面采用for循环进行自旋,首先获取同步状态,将同步状态加上传入的参数,然后以CAS方式更新同步状态,更新成功就返回true并跳出方法,否则就继续循环直到成功为止。
下面我们就来利用Semaphore实现一个简单的数据库连接池,通过这个例子希望读者们能更加深入的掌握Semaphore的运用。
public class ConnectPool { //连接池大小 private int size; //数据库连接集合 private Connect[] connects; //连接状态标志 private boolean[] connectFlag; //剩余可用连接数 private volatile int available; //信号量 private Semaphore semaphore; //构造器 public ConnectPool(int size) { this.size = size; this.available = size; semaphore = new Semaphore(size, true); connects = new Connect[size]; connectFlag = new boolean[size]; initConnects(); } //初始化连接 private void initConnects() { //生成指定数量的数据库连接 for(int i = 0; i < this.size; i++) { connects[i] = new Connect(); } } //获取数据库连接 private synchronized Connect getConnect(){ for(int i = 0; i < connectFlag.length; i++) { //遍历集合找到未使用的连接 if(!connectFlag[i]) { //将连接设置为使用中 connectFlag[i] = true; //可用连接数减1 available--; System.out.println("【"+Thread.currentThread().getName()+"】以获取连接 剩余连接数:" + available); //返回连接引用 return connects[i]; } } return null; } //获取一个连接 public Connect openConnect() throws InterruptedException { //获取许可证 semaphore.acquire(); //获取数据库连接 return getConnect(); } //释放一个连接 public synchronized void release(Connect connect) { for(int i = 0; i < this.size; i++) { if(connect == connects[i]){ //将连接设置为未使用 connectFlag[i] = false; //可用连接数加1 available++; System.out.println("【"+Thread.currentThread().getName()+"】以释放连接 剩余连接数:" + available); //释放许可证 semaphore.release(); } } } //剩余可用连接数 public int available() { return available; } }
测试代码:
public class TestThread extends Thread { private static ConnectPool pool = new ConnectPool(3); @Override public void run() { try { Connect connect = pool.openConnect(); Thread.sleep(100); //休息一下 pool.release(connect); } catch (InterruptedException e) { e.printStackTrace(); } } public static void main(String[] args) { for(int i = 0; i < 10; i++) { new TestThread().start(); } } }
使用一个数组来存放数据库连接的引用,在初始化连接池的时候会调用initConnects方法创建指定数量的数据库连接,并将它们的引用存放到数组中,此外还有一个相同大小的数组来记录连接是否可用。
每当外部线程请求获取一个连接时,首先调用semaphore.acquire()方法获取一个许可证,然后将连接状态设置为使用中,最后返回该连接的引用。许可证的数量由构造时传入的参数决定,每调用一次semaphore.acquire()方法许可证数量减1,当数量减为0时说明已经没有连接可以使用了,这时如果其他线程再来获取就会被阻塞。每当线程释放一个连接的时候会调用semaphore.release()将许可证释放,此时许可证的总量又会增加,代表可用的连接数增加了,那么之前被阻塞的线程将会醒来继续获取连接,这时再次获取就能够成功获取连接了。