本文首发于我的个人博客: https://h2pl.github.io/
欢迎阅览我的CSDN专栏:Java并发指南
https://blog.csdn.net/column/details/21961.html相关代码会放在我的的Github: https://github.com/h2pl/
一行一行源码分析清楚AbstractQueuedSynchronizer
转自
https://www.javadoop.com/post/AbstractQueuedSynchronizer#toc4在分析 Java 并发包 java.util.concurrent 源码的时候,少不了需要了解 AbstractQueuedSynchronizer(以下简写AQS)这个抽象类,因为它是 Java 并发包的基础工具类,是实现 ReentrantLock、CountDownLatch、Semaphore、FutureTask 等类的基础。
Google 一下 AbstractQueuedSynchronizer,我们可以找到很多关于 AQS 的介绍,但是很多都没有介绍清楚,因为大部分文章没有把其中的一些关键的细节说清楚。
本文将从 ReentrantLock 的公平锁源码出发,分析下 AbstractQueuedSynchronizer 这个类是怎么工作的,希望能给大家提供一些简单的帮助。
申明以下几点:
废话结束,开始。
此篇博客所有源码均来自JDK 1.8
在上篇博客 【死磕Java并发】—–J.U.C之AQS:AQS简介 中提到了AQS内部维护着一个FIFO队列,该队列就是CLH同步队列。
CLH同步队列是一个FIFO双向队列,AQS依赖它来完成同步状态的管理,当前线程如果获取同步状态失败时,AQS则会将当前线程已经等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态。
在CLH同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、状态(waitStatus)、前驱节点(prev)、后继节点(next),其定义如下:
static final class Node { /** 共享 */ static final Node SHARED = new Node(); /** 独占 */ static final Node EXCLUSIVE = null; /** * 因为超时或者中断,节点会被设置为取消状态,被取消的节点时不会参与到竞争中的,他会一直保持取消状态不会转变为其他状态; */ static final int CANCELLED = 1; /** * 后继节点的线程处于等待状态,而当前节点的线程如果释放了同步状态或者被取消,将会通知后继节点,使后继节点的线程得以运行 */ static final int SIGNAL = -1; /** * 节点在等待队列中,节点线程等待在Condition上,当其他线程对Condition调用了signal()后,改节点将会从等待队列中转移到同步队列中,加入到同步状态的获取中 */ static final int CONDITION = -2; /** * 表示下一次共享式同步状态获取将会无条件地传播下去 */ static final int PROPAGATE = -3; /** 等待状态 */ volatile int waitStatus; /** 前驱节点 */ volatile Node prev; /** 后继节点 */ volatile Node next; /** 获取同步状态的线程 */ volatile Thread thread; Node nextWaiter; final boolean isShared() { return nextWaiter == SHARED; } final Node predecessor() throws NullPointerException { Node p = prev; if (p == null) throw new NullPointerException(); else return p; } Node() { } Node(Thread thread, Node mode) { this.nextWaiter = mode; this.thread = thread; } Node(Thread thread, int waitStatus) { this.waitStatus = waitStatus; this.thread = thread; } }
CLH同步队列结构图如下:
学了数据结构的我们,CLH队列入列是再简单不过了,无非就是tail指向新节点、新节点的prev指向当前最后的节点,当前最后一个节点的next指向当前节点。代码我们可以看看addWaiter(Node node)方法:
private Node addWaiter(Node mode) { //新建Node Node node = new Node(Thread.currentThread(), mode); //快速尝试添加尾节点 Node pred = tail; if (pred != null) { node.prev = pred; //CAS设置尾节点 if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } //多次尝试 enq(node); return node; }
addWaiter(Node node)先通过快速尝试设置尾节点,如果失败,则调用enq(Node node)方法设置尾节点
private Node enq(final Node node) { //多次尝试,直到成功为止 for (;;) { Node t = tail; //tail不存在,设置为首节点 if (t == null) { if (compareAndSetHead(new Node())) tail = head; } else { //设置为尾节点 node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
在上面代码中,两个方法都是通过一个CAS方法compareAndSetTail(Node expect, Node update)来设置尾节点,该方法可以确保节点是线程安全添加的。在enq(Node node)方法中,AQS通过“死循环”的方式来保证节点可以正确添加,只有成功添加后,当前线程才会从该方法返回,否则会一直执行下去。
过程图如下:
CLH同步队列遵循FIFO,首节点的线程释放同步状态后,将会唤醒它的后继节点(next),而后继节点将会在获取同步状态成功时将自己设置为首节点,这个过程非常简单,head执行该节点并断开原首节点的next和当前节点的prev即可,注意在这个过程是不需要使用CAS来保证的,因为只有一个线程能够成功获取到同步状态。过程图如下:
先来看看 AQS 有哪些属性,搞清楚这些基本就知道 AQS 是什么套路了,毕竟可以猜嘛!
// 头结点,你直接把它当做 当前持有锁的线程 可能是最好理解的 private transient volatile Node head; // 阻塞的尾节点,每个新的节点进来,都插入到最后,也就形成了一个隐视的链表 private transient volatile Node tail; // 这个是最重要的,不过也是最简单的,代表当前锁的状态,0代表没有被占用,大于0代表有线程持有当前锁 // 之所以说大于0,而不是等于1,是因为锁可以重入嘛,每次重入都加上1 private volatile int state; // 代表当前持有独占锁的线程,举个最重要的使用例子,因为锁可以重入 // reentrantLock.lock()可以嵌套调用多次,所以每次用这个来判断当前线程是否已经拥有了锁 // if (currentThread == getExclusiveOwnerThread()) {state++} private transient Thread exclusiveOwnerThread; //继承自AbstractOwnableSynchronizer
怎么样,看样子应该是很简单的吧,毕竟也就四个属性啊。
AbstractQueuedSynchronizer 的等待队列示意如下所示,注意了,之后分析过程中所说的 queue,也就是阻塞队列不包含 head,不包含 head,不包含 head。
等待队列中每个线程被包装成一个 node,数据结构是链表,一起看看源码吧:
static final class Node { /** Marker to indicate a node is waiting in shared mode */ // 标识节点当前在共享模式下 static final Node SHARED = new Node(); /** Marker to indicate a node is waiting in exclusive mode */ // 标识节点当前在独占模式下 static final Node EXCLUSIVE = null; // ======== 下面的几个int常量是给waitStatus用的 =========== /** waitStatus value to indicate thread has cancelled */ // 代码此线程取消了争抢这个锁 static final int CANCELLED = 1; /** waitStatus value to indicate successor's thread needs unparking */ // 官方的描述是,其表示当前node的后继节点对应的线程需要被唤醒 static final int SIGNAL = -1; /** waitStatus value to indicate thread is waiting on condition */ // 本文不分析condition,所以略过吧,下一篇文章会介绍这个 static final int CONDITION = -2; /** * waitStatus value to indicate the next acquireShared should * unconditionally propagate */ // 同样的不分析,略过吧 static final int PROPAGATE = -3; // ===================================================== // 取值为上面的1、-1、-2、-3,或者0(以后会讲到) // 这么理解,暂时只需要知道如果这个值 大于0 代表此线程取消了等待, // 也许就是说半天抢不到锁,不抢了,ReentrantLock是可以指定timeouot的。。。 volatile int waitStatus; // 前驱节点的引用 volatile Node prev; // 后继节点的引用 volatile Node next; // 这个就是线程本尊 volatile Thread thread; }
Node 的数据结构其实也挺简单的,就是 thread + waitStatus + pre + next 四个属性而已,大家先要有这个概念在心里。
上面的是基础知识,后面会多次用到,心里要时刻记着它们,心里想着这个结构图就可以了。下面,我们开始说 ReentrantLock 的公平锁。多嘴一下,我说的阻塞队列不包含 head 节点。
首先,我们先看下 ReentrantLock 的使用方式。
// 我用个web开发中的service概念吧 public class OrderService { // 使用static,这样每个线程拿到的是同一把锁,当然,spring mvc中service默认就是单例,别纠结这个 private static ReentrantLock reentrantLock = new ReentrantLock(true); public void createOrder() { // 比如我们同一时间,只允许一个线程创建订单 reentrantLock.lock(); // 通常,lock 之后紧跟着 try 语句 try { // 这块代码同一时间只能有一个线程进来(获取到锁的线程), // 其他的线程在lock()方法上阻塞,等待获取到锁,再进来 // 执行代码... // 执行代码... // 执行代码... } finally { // 释放锁 reentrantLock.unlock(); } } }
ReentrantLock 在内部用了内部类 Sync 来管理锁,所以真正的获取锁和释放锁是由 Sync 的实现类来控制的。
abstract static class Sync extends AbstractQueuedSynchronizer { }
Sync 有两个实现,分别为 NonfairSync(非公平锁)和 FairSync(公平锁),我们看 FairSync 部分。
public ReentrantLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); }
很多人肯定开始嫌弃上面废话太多了,下面跟着代码走,我就不废话了。
static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; // 争锁 final void lock() { acquire(1); } // 来自父类AQS,我直接贴过来这边,下面分析的时候同样会这样做,不会给读者带来阅读压力 // 我们看到,这个方法,如果tryAcquire(arg) 返回true, 也就结束了。 // 否则,acquireQueued方法会将线程压到队列中 public final void acquire(int arg) { // 此时 arg == 1 // 首先调用tryAcquire(1)一下,名字上就知道,这个只是试一试 // 因为有可能直接就成功了呢,也就不需要进队列排队了, // 对于公平锁的语义就是:本来就没人持有锁,根本没必要进队列等待(又是挂起,又是等待被唤醒的) if (!tryAcquire(arg) && // tryAcquire(arg)没有成功,这个时候需要把当前线程挂起,放到阻塞队列中。 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) { selfInterrupt(); } } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ // 尝试直接获取锁,返回值是boolean,代表是否获取到锁 // 返回true:1.没有线程在等待锁;2.重入锁,线程本来就持有锁,也就可以理所当然可以直接获取 protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); // state == 0 此时此刻没有线程持有锁 if (c == 0) { // 虽然此时此刻锁是可以用的,但是这是公平锁,既然是公平,就得讲究先来后到, // 看看有没有别人在队列中等了半天了 if (!hasQueuedPredecessors() && // 如果没有线程在等待,那就用CAS尝试一下,成功了就获取到锁了, // 不成功的话,只能说明一个问题,就在刚刚几乎同一时刻有个线程抢先了 // 因为刚刚还没人的,我判断过了
说到这里,也就明白了,多看几遍 final boolean acquireQueued(final Node node, int arg)
这个方法吧。自己推演下各个分支怎么走,哪种情况下会发生什么,走到哪里。
最后,就是还需要介绍下唤醒的动作了。我们知道,正常情况下,如果线程没获取到锁,线程会被 LockSupport.park(this);
挂起停止,等待被唤醒。
// 唤醒的代码还是比较简单的,你如果上面加锁的都看懂了,下面都不需要看就知道怎么回事了 public void unlock() { sync.release(1); } public final boolean release(int arg) { // 往后看吧 if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } // 回到ReentrantLock看tryRelease方法 protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); // 是否完全释放锁 boolean free = false; // 其实就是重入的问题,如果c==0,也就是说没有嵌套锁了,可以释放了,否则还不能释放掉 if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; } /** * Wakes up node's successor, if one exists. * * @param node the node */ // 唤醒后继节点 // 从上面调用处知道,参数node是head头结点 private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; // 如果head节点当前waitStatus<0, 将其修改为0 if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ // 下面的代码就是唤醒后继节点,但是有可能后继节点取消了等待(waitStatus==1) // 从队尾往前找,找到waitStatus<=0的所有节点中排在最前面的 Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; // 从后往前找,仔细看代码,不必担心中间有节点取消(waitStatus==1)的情况 for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) // 唤醒线程 LockSupport.unpark(s.thread); }
唤醒线程以后,被唤醒的线程将从以下代码中继续往前走:
private final boolean parkAndCheckInterrupt() { LockSupport.park(this); // 刚刚线程被挂起在这里了 return Thread.interrupted(); } // 又回到这个方法了:acquireQueued(final Node node, int arg),这个时候,node的前驱是head了
好了,后面就不分析源码了,剩下的还有问题自己去仔细看看代码吧。
总结一下吧。
在并发环境下,加锁和解锁需要以下三个部件的协调:
下面属于回顾环节,用简单的示例来说一遍,如果上面的有些东西没看懂,这里还有一次帮助你理解的机会。
首先,第一个线程调用 reentrantLock.lock(),翻到最前面可以发现,tryAcquire(1) 直接就返回 true 了,结束。只是设置了 state=1,连 head 都没有初始化,更谈不上什么阻塞队列了。要是线程 1 调用 unlock() 了,才有线程 2 来,那世界就太太太平了,完全没有交集嘛,那我还要 AQS 干嘛。
如果线程 1 没有调用 unlock() 之前,线程 2 调用了 lock(), 想想会发生什么?
线程 2 会初始化 head【new Node()】,同时线程 2 也会插入到阻塞队列并挂起 (注意看这里是一个 for 循环,而且设置 head 和 tail 的部分是不 return 的,只有入队成功才会跳出循环)
private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
首先,是线程 2 初始化 head 节点,此时 head==tail, waitStatus==0
然后线程 2 入队:
同时我们也要看此时节点的 waitStatus,我们知道 head 节点是线程 2 初始化的,此时的 waitStatus 没有设置, java 默认会设置为 0,但是到 shouldParkAfterFailedAcquire 这个方法的时候,线程 2 会把前驱节点,也就是 head 的waitStatus设置为-1。
那线程 2 节点此时的 waitStatus 是多少呢,由于没有设置,所以是 0;
如果线程3此时再进来,直接插到线程2的后面就可以了,此时线程 3 的 waitStatus 是 0,到 shouldParkAfterFailedAcquire 方法的时候把前驱节点线程 2 的 waitStatus 设置为 -1。
这里可以简单说下 waitStatus 中 SIGNAL(-1) 状态的意思,Doug Lea 注释的是:代表后继节点需要被唤醒。也就是说这个 waitStatus 其实代表的不是自己的状态,而是后继节点的状态,我们知道,每个 node 在入队的时候,都会把前驱节点的状态改为 SIGNAL,然后阻塞,等待被前驱唤醒。这里涉及的是两个问题:有线程取消了排队、唤醒操作。其实本质是一样的,读者也可以顺着 “waitStatus代表后继节点的状态” 这种思路去看一遍源码。