转自: https://github.com/jasonGeng88/blog
本系列文章首发于我的个人博客: https://h2pl.github.io/
欢迎阅览我的CSDN专栏:Java网络编程和NIO https://blog.csdn.net/column/details/21963.html
部分代码会放在我的的Github: https://github.com/h2pl/
摘要:本文属于原创,欢迎转载,转载请保留出处: https://github.com/jasonGeng88/blog
今天,和大家聊一下 JAVA 中的 socket 通信问题。这里采用最简单的一请求一响应模型为例,假设我们现在需要向 baidu 站点进行通信。我们用 JAVA 原生的 socket 该如何实现。
首先,我们需要建立 socket 连接( 核心代码 )
import java.net.InetSocketAddress; import java.net.Socket; import java.net.SocketAddress; // 初始化 socket Socket socket = new Socket(); // 初始化远程连接地址 SocketAddress remote = new InetSocketAddress(host, port); // 建立连接 socket.connect(remote);
成功建立 socket 连接后,我们就能获得它的输入输出流,通信的本质是对输入输出流的处理。通过输入流,读取网络连接上传来的数据,通过输出流,将本地的数据传出给远端。
socket 连接实际与处理文件流有点类似,都是在进行 IO 操作。
获取输入、输出流代码如下:
// 输入流 InputStream in = socket.getInputStream(); // 输出流 OutputStream out = socket.getOutputStream();
关于 IO 流的处理,我们一般会用相应的包装类来处理 IO 流,如果直接处理的话,我们需要对 byte[]
进行操作,而这是相对比较繁琐的。如果采用包装类,我们可以直接以 string
、 int
等类型进行处理,简化了 IO 字节操作。
下面以 BufferedReader
与 PrintWriter
作为输入输出的包装类进行处理。
// 获取 socket 输入流 private BufferedReader getReader(Socket socket) throws IOException { InputStream in = socket.getInputStream(); return new BufferedReader(new InputStreamReader(in)); } // 获取 socket 输出流 private PrintWriter getWriter(Socket socket) throws IOException { OutputStream out = socket.getOutputStream(); return new PrintWriter(new OutputStreamWriter(out)); }
有了 socket 连接、IO 输入输出流,下面就该向发送请求数据,以及获取请求的响应结果。
因为有了 IO 包装类的支持,我们可以直接以字符串的格式进行传输,由包装类帮我们将数据装换成相应的字节流。
因为我们与 baidu 站点进行的是 HTTP 访问,所有我们不需要额外定义输出格式。采用标准的 HTTP 传输格式,就能进行请求响应了( 某些特定的 RPC 框架,可能会有自定义的通信格式 )。
请求的数据内容处理如下:
public class HttpUtil { public static String compositeRequest(String host){ return "GET / HTTP/1.1/r/n" + "Host: " + host + "/r/n" + "User-Agent: curl/7.43.0/r/n" + "Accept: */*/r/n/r/n"; } }
发送请求数据代码如下:
// 发起请求 PrintWriter writer = getWriter(socket); writer.write(HttpUtil.compositeRequest(host)); writer.flush();
接收响应数据代码如下:
// 读取响应 String msg; BufferedReader reader = getReader(socket); while ((msg = reader.readLine()) != null){ System.out.println(msg); }
至此,讲完了原生 socket 下的创建连接、发送请求与接收响应的所有核心代码。
完整代码如下:
import java.io.*; import java.net.InetSocketAddress; import java.net.Socket; import java.net.SocketAddress; import com.test.network.util.HttpUtil; public class SocketHttpClient { public void start(String host, int port) { // 初始化 socket Socket socket = new Socket(); try { // 设置 socket 连接 SocketAddress remote = new InetSocketAddress(host, port); socket.setSoTimeout(5000); socket.connect(remote); // 发起请求 PrintWriter writer = getWriter(socket); System.out.println(HttpUtil.compositeRequest(host)); writer.write(HttpUtil.compositeRequest(host)); writer.flush(); // 读取响应 String msg; BufferedReader reader = getReader(socket); while ((msg = reader.readLine()) != null){ System.out.println(msg); } } catch (IOException e) { e.printStackTrace(); } finally { try { socket.close(); } catch (IOException e) { e.printStackTrace(); } } } private BufferedReader getReader(Socket socket) throws IOException { InputStream in = socket.getInputStream(); return new BufferedReader(new InputStreamReader(in)); } private PrintWriter getWriter(Socket socket) throws IOException { OutputStream out = socket.getOutputStream(); return new PrintWriter(new OutputStreamWriter(out)); } }
下面,我们通过实例化一个客户端,来展示 socket 通信的结果。
public class Application { public static void main(String[] args) { new SocketHttpClient().start("www.baidu.com", 80); } }
结果输出:
这种方式,虽然实现功能没什么问题。但是我们细看,发现在 IO 写入与读取过程,是发生了 IO 阻塞的情况。即:
// 会发生 IO 阻塞 writer.write(HttpUtil.compositeRequest(host)); reader.readLine();
所以如果要同时请求10个不同的站点,如下:
public class SingleThreadApplication { public static void main(String[] args) { // HttpConstant.HOSTS 为 站点集合 for (String host: HttpConstant.HOSTS) { new SocketHttpClient().start(host, HttpConstant.PORT); } } }
它一定是第一个请求响应结束后,才会发起下一个站点处理。
这在服务端更明显,虽然这里的代码是客户端连接,但是具体的操作和服务端是差不多的。请求只能一个个串行处理,这在响应时间上肯定不能达标。
有人觉得这根本不是问题,JAVA 是多线程的编程语言。对于这种情况,采用多线程的模型再合适不过。
public class MultiThreadApplication { public static void main(String[] args) { for (final String host: HttpConstant.HOSTS) { Thread t = new Thread(new Runnable() { public void run() { new SocketHttpClient().start(host, HttpConstant.PORT); } }); t.start(); } } }
这种方式起初看起来挺有用的,但并发量一大,应用会起很多的线程。都知道,在服务器上,每一个线程实际都会占据一个文件句柄。而服务器上的句柄数是有限的,而且大量的线程,造成的线程间切换的消耗也会相当的大。所以这种方式在并发量大的场景下,一定是承载不住的。
既然线程太多不行,那我们控制一下线程创建的数目不就行了。只启动固定的线程数来进行 socket 处理,既利用了多线程的处理,又控制了系统的资源消耗。
public class ThreadPoolApplication { public static void main(String[] args) { ExecutorService executorService = Executors.newFixedThreadPool(8); for (final String host: HttpConstant.HOSTS) { Thread t = new Thread(new Runnable() { public void run() { new SocketHttpClient().start(host, HttpConstant.PORT); } }); executorService.submit(t); new SocketHttpClient().start(host, HttpConstant.PORT); } } }
关于启动的线程数,一般 CPU 密集型会设置在 N+1(N为CPU核数),IO 密集型设置在 2N + 1。
这种方式,看起来是最优的了。那有没有更好的呢,如果一个线程能同时处理多个 socket 连接,并且在每个 socket 输入输出数据没有准备好的情况下,不进行阻塞,那是不是更优呢。这种技术叫做“IO多路复用”。在 JAVA 的 nio 包中,提供了相应的实现。
public class TCP客户端 { public static void main(String[] args) { new Thread(new Runnable() { @Override public void run() { try { Socket s = new Socket("127.0.0.1",1234); //构建IO InputStream is = s.getInputStream(); OutputStream os = s.getOutputStream(); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(os)); //向服务器端发送一条消息 bw.write("测试客户端和服务器通信,服务器接收到消息返回到客户端/n"); bw.flush(); //读取服务器返回的消息 BufferedReader br = new BufferedReader(new InputStreamReader(is)); String mess = br.readLine(); System._out_.println("服务器:"+mess); } catch (UnknownHostException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } } }).start(); } }
public class TCP服务端 { public static void main(String[] args) { new Thread(new Runnable() { @Override public void run() { try { ServerSocket ss = new ServerSocket(1234); while (true) { System._out_.println("启动服务器...."); Socket s = ss.accept(); System._out_.println("客户端:" + s.getInetAddress().getLocalHost() + "已连接到服务器"); BufferedReader br = new BufferedReader(new InputStreamReader(s.getInputStream())); //读取客户端发送来的消息 String mess = br.readLine(); System._out_.println("客户端:" + mess); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(s.getOutputStream())); bw.write(mess + "/n"); bw.flush(); } } catch (IOException e) { e.printStackTrace(); } } }).start(); } }
public class UDP客户端 { public static void main(String[] args) { new Thread(new Runnable() { @Override public void run() { byte []arr = "Hello Server".getBytes(); try { InetAddress inetAddress = InetAddress.getLocalHost(); DatagramSocket datagramSocket = new DatagramSocket(); DatagramPacket datagramPacket = new DatagramPacket(arr, arr.length, inetAddress, 1234); datagramSocket.send(datagramPacket); System._out_.println("send end"); } catch (UnknownHostException e) { e.printStackTrace(); } catch (SocketException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } } }).start(); } }
public class UDP服务端 { public static void main(String[] args) { new Thread(new Runnable() { @Override public void run() { try { DatagramSocket datagramSocket = new DatagramSocket(1234); byte[] buffer = new byte[1024]; DatagramPacket packet = new DatagramPacket(buffer, buffer.length); datagramSocket.receive(packet); System._out_.println("server recv"); String msg = new String(packet.getData(), "utf-8"); System._out_.println(msg); } catch (SocketException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } } }).start(); } }