HashMap是Java程序员使用频率最高的数据结构之一。另外,JDK1.8对HashMap底层的实现进行了优化,如引入红黑树的数据结构以及扩容的优化等等来提高性能。本文结合JDK1.8的源码,探讨HashMap的结构实现和功能原理。
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; /** * HashMap的默认初始化大小为16 */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * HashMap的最大容量。 */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * 负载因子的大小,一般HashMap的扩容的临界点是当前HashMap的大小 > DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * 这是JDK1.8在底层做的一个优化,当一个Entry挂载的节点超过8个,就会将当前Entry的链表结构转化为红黑树的数据结构 */ static final int TREEIFY_THRESHOLD = 8; /** * */ static final int UNTREEIFY_THRESHOLD = 6; /** * 红黑树的最大节点数 */ static final int MIN_TREEIFY_CAPACITY = 64; /** * 是hash表中,Entry的节点. */ static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } /* ---------------- Static utilities -------------- */ /** * 计算key的hash值。 */ static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } /** * 这个方法时HashMap中比较实用的方法,用于计算传入值的2倍,也算是JDK源码部分的最佳实践。 */ static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /* ---------------- Fields -------------- */ /** * hash表 */ transient Node<K,V>[] table; /** * 保存缓存的entrySet。 */ transient Set<Map.Entry<K,V>> entrySet; /** * map中键值对的数量。 */ transient int size; /** * * 这个HashMap被结构修改的次数结构修改是那些改变HashMap中的映射数量或者修改其内部结构(例如,重新散列)的修改。 该字段用于在HashMap失败快速的Collection-views上创建迭代器。 */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * * @serial */ int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; }
搞清楚HashMap,首先需要知道HashMap是什么,即它的存储结构-字段;其次弄明白它能干什么,即它的功能实现-方法。下面我们针对这两个方面详细展开讲解。
从结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下如所示。
这里需要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优点呢?
(1) 从源码可知,HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。我们来看Node[JDK1.8]是何物。
static class Node<K,V> implements Map.Entry<K,V> { final int hash; //用来定位数组索引位置 final K key; V value; Node<K,V> next; //链表的下一个node Node(int hash, K key, V value, Node<K,V> next) { ... } public final K getKey(){ ... } public final V getValue() { ... } public final String toString() { ... } public final int hashCode() { ... } public final V setValue(V newValue) { ... } public final boolean equals(Object o) { ... } }
Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。
(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题,Java中HashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:
map.put("name","makefeixiang");
系统将调用”name”这个key的hashCode()方法得到其hashCode 值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。
/** * 计算key的hash值。 */ static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
当然如果哈希桶数组很大,即便是较差的hash算法也会比较分散,有较好的效果,然而,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多hash碰撞,因此就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。
HashMap的扩容机制就是通过threshold = length * Load factor来做是否进行扩容的决策。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。当然,负载因子也不是越大越好,JDK设计者给出了一个相对来说比较均衡的方案,Load factor为负载因子(默认值是0.75),一般我们不对这个参数做修改。
HashMap的内部功能实现很多,本文主要选取从根据key获取HashMap数组索引、put方法的执行、扩容、获取HashMap对应key的值等几个具有代表性的点深入展开讲解。
不管增加、删除、查找键值对,定位到哈希桶数组的索引都是很关键的第一步。HashMap的数据结构是数组和链表或者红黑树的结合,所以我们希望这个HashMap里面的元素位置尽量分布均匀,使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,就可以马上找到,不用遍历链表,查询的时间复杂度也仅仅是O(n)。我们来看看源码的实现:
// 方法1,代码段1 static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } // 当我们使用hash时,代码段2 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null);
这里的Hash算法本质上就是三步: 取key的hashCode值、高位运算、取模运算。
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // 步骤①:tab为空则创建 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 步骤②:计算index,并对null做处理 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; // 步骤③:节点key存在,直接覆盖value if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 步骤④:判断该链为红黑树 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 步骤⑤:该链为链表 else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); //链表长度大于8转换为红黑树进行处理 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } // key已经存在直接覆盖value if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; // 用来实现迭代时被修改的快速失败策略 // 步骤⑥:超过最大容量 就扩容 if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素, 当HashMap对象内部的数组长度 大于DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY ,HashMap就需要扩大数组的长度,以便能装入更多的元素。方法是使用一个新的数组代替已有的容量小的数组。
我们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { // 超过最大值就不再扩充了 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 没超过最大值,就扩充为原来的2倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 计算新的resize上限 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { // 把每个bucket都移动到新的buckets中 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; // else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // 链表优化重hash的代码块 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; // 原索引 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } // 原索引+oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 原索引放到bucket里 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } // 原索引+oldCap放到bucket里 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
相比于上面几个,HashMap中获取value相对来说就简单许多,基本逻辑就是根据key算出hash值定位到哈希桶的索引,当可以就是当前索引的值则直接返回其对于的value,反之用key去遍历equal该索引下的key,直到找到位置。
final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
在多线程使用场景中,应该尽量不要使用线程不安全的HashMap,而应该使用线程安全的ConcurrentHashMap。那么HashMap线程不安全的性质表现在哪里呢?下面来分析一下并发场景下使用HashMap可能造成死循环的问题。在HashMap的resize方法中,我们可以看到
Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null);
由于楼主本人才疏学浅,具体过程就不在分析,想要了解的请移步 疫苗:JAVA HASHMAP的死循环
(1) 扩容是一个特别耗性能的操作,因此初始化HashMap的时候给一个数值,避免map频繁的扩容情况的额发生。
(2) 负载因子是可以修改的,但是建议一般情况下不要轻易修改。
(3) HashMap是线程不安全的,不要在并发的环境中使用HashMap,建议使用ConcurrentHashMap或者Collections.synchronizedMap()中的。
(4) JDK1.8引入红黑树在很大程度优化了HashMap的性能。