我们写的Java代码,经过编译器编译之后,就成为了 .class
文件,从本地机器码变成了字节码。Class文件是一组以8位字节为基础单位的二进制流,各个数据项目严格按照顺序紧凑地排列在Class文件之中,中间没有添加任何分隔符,这使得整个Class文件中存储的内容几乎全部是程序运行的必要数据,没有空隙存在。Class文件中只有2种数据结构:无符号数和表。
每个Class文件的头4个字节称为魔数(Magic Number),值为 0xCAFEBABE
。紧接着4个字节是Class文件的版本号。再往后,就是类的具体信息了,比如常量池、类索引、父类索引、接口索引、字段、方法等信息了。
所谓类的加载,就是把Class文件读到内存中。
类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)7个阶段。其中验证、准备、解析3个部分统称为连接(Linking)。
加载、验证、准备、初始化和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(也称为动态绑定或晚期绑定)。注意,是按部就班地“开始”,而不是按部就班地“进行”或“完成”,强调这点是因为这些阶段通常都是互相交叉地混合式进行的,通常会在一个阶段执行的过程中调用、激活另外一个阶段。
在加载阶段,虚拟机做3件事:
验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
验证阶段大致上会完成4个阶段的检验动作
验证阶段是非常重要的,但不是必须的。它对程序运行期没有影响,如果所引用的类经过反复验证,那么可以考虑采用-Xverify:none参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。
准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。这个阶段中有两个容易产生混淆的概念需要强调一下,首先,这时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次,这里所说的初始值“通常情况”下是数据类型的零值。
假设一个类变量的定义为:public static int value = 123;
那变量value在准备阶段过后的初始值为0而不是123,因为这时候尚未开始执行任何Java 方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器<clinit>()方 法之中,所以把value赋值为123的动作将在初始化阶段才会执行。
当然也有特殊情况:如果类字段的字段属性表中存在ConstantValue属性,那在准备阶段变量value就会被初始化为ConstantValue属性所指定的值。
假设上面类变量value的定义变为:public static final int value = 123;
编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据ConstantValue的设置将value赋值为123。
解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行。
这一步开始执行类中定义的Java程序代码(或者说是字节码)。虚拟机会保证一个类的初始化方法在多线程环境中被正确地加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的初始化方法,其他线程都需要阻塞等待,直到活动线程执行完毕。
只有当主动使用一个类的时候才会触发这个类的初始化,类的主动使用包括以下六种:
虚拟机设计团队把类加载阶段中的“通过一个类的全限定名来获取描述此类的二进制字节流”这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需要的类。实现这个动作的代码模块称为“类加载器”。
从Java虚拟机的角度来讲,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader),这个类加载器使用C++语言实现,是虚拟机自身的一部分;另一种就是所有其他的类加载器,这些类加载器都由Java语言实现,独立于虚拟机外部,并且全都继承自抽象类java.lang.ClassLoader。
从Java开发人员的角度来看,类加载器可以划分为以下3种:
我们的应用程序都是由这3种类加载器互相配合进行加载的,如果有必要,还可以加入 自己定义的类加载器。
双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。这里类加载器之间的父子关系一般不会以 继承
的关系来实现,而是都使用 组合
关系来复用父加载器的代码。它不是强制性的约束模型,而是Java设计者推荐的一种类加载器实现方式。
双亲委派模型的工作过程:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去加载。
ClassLoader源码分析:
public Class<?> loadClass(String name) throws ClassNotFoundException { return loadClass(name, false); } protected synchronized Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException { // 首先判断该类型是否已经被加载 Class c = findLoadedClass(name); if (c == null) { //如果没有被加载,就委托给父类加载或者委派给启动类加载器加载 try { if (parent != null) { //如果存在父类加载器,就委派给父类加载器加载 c = parent.loadClass(name, false); } else { //如果不存在父类加载器,就检查是否是由启动类加载器加载的类,通过调用本地方法native Class findBootstrapClass(String name) c = findBootstrapClass0(name); } } catch (ClassNotFoundException e) { // 如果父类加载器和启动类加载器都不能完成加载任务,才调用自身的加载功能 c = findClass(name); } } if (resolve) { resolveClass(c); } return c; }
通过分析源码,我们知道,双亲委派模型可以保证每个类都只会被加载一次(类似缓存机制)。