最近恶补了一些关于加密算法的知识,然后用编程语言的来实现
高级加密标准(AES,Advanced Encryption Standard)为最常见的 对称加密算法 (微信小程序加密传输就是用这个加密算法的)。 对称加密算法也就是加密和解密用相同的密钥 ,具体的加密流程如下图:
下面简单介绍下各个部分的作用与意义:
没有经过加密的数据
用来加密明文的密码, 在对称加密算法中,加密与解密的密钥是相同的 ,密钥为接收方与发送方协商产生,但不可以直接在网络上传输,否则会导致密钥泄露,通常是通过非对称加密算法加密密钥,然后再通过网络传输给对方,或者直接面对面商量密钥。密钥绝对不能泄露,否则会被攻击者还原密钥,窃取数据
设AES加密函数为E,则 C = E(K,P)
.其中P为明文,K为密钥,C为密文。也就是说,把明文P和密钥K作为加密函数的参数输入,则加密函数E会输出密文C
经过加密函数处理后的数据
设AES解密函数为D,则 P = D()
.其中C为密文,K为密钥,P为明文。也就是说,把密文C和密钥K作为解密函数的参数输入,则解密函数会输出明文P
这里简单解释下 对称加密算法 和 非对称加密算法
加密和解密使用的密钥是相同的,这种加密方式加密 速度非常快 ,适合经常发送数据的场合。 缺点是密钥的传输比较麻烦
加密和解密使用的密钥是不同的,这种加密方式是用数学定理或者公式构造的,通常加密解密的 速度比较慢 ,适合偶尔发送数据的场合。 优点是密钥传输方便 。常见的非对称加密算法为RSA、ECC和EIGamal
实际中,一般是通过RSA加密AES的密钥,传输到接收方,接收方解密得到AES密钥
AES为分组密码,分组密码也就是把明文分成一组一组的,每组长度相等,每次加密一组数据,直到加密完所有组。在AES标准规范中,分组长度只能是128位,也就是说,每个分组为16个字节。密钥的长度可以使用128位、192位或256位。密钥的长度不同,推荐加密轮数也不同。如下表所示:
AES | 密钥长度(32bit) | 分组长度(32bit) | 加密轮数 |
---|---|---|---|
AES-128 | 4 | 4 | 10 |
AES-192 | 6 | 4 | 12 |
AES-256 | 8 | 4 | 14 |
上面说到,AES的加密公式为 C = E(K,P)
,在加密函数E种,会执行一个轮函数,并且执行n(n为加密轮数)次这个轮函数,这个轮函数的前n-1次执行的操作是一样的,只有第n次有所不同
AES的处理单位是字节,128位的输入明文分组P和输入密钥K都被分成16字节,分别记为$P = P_0,P_1,...,P_{15}$和$K = K_0,K_1,...,K_{15}$。如明文分组为P=abcdefghijklmnop,其中字符a对应$P_0$,p对应$P_{15}$。一般地,明文分组用字节为单位地正方形矩阵描述,称为状态矩阵。在算法地每一轮中,状态矩阵地内容不断发生变化,最后的结果作为密文输出。该矩阵中字节地排列顺序为从上到下、从左至右依次排列,如下图所示:
现在假设明文分组P=abcdefghijklmnop,则对应上面生成地状态矩阵图如下:
上图中,0x61为a字符的十六进制表示,可以看到,明文经过AES加密后,已经面目全非了
类似地,128位密钥也是用以字节为单位的矩阵表示,矩阵的每一列被称为1个32为比特字。通过密钥编排函数可以将该密钥矩阵扩展成一个44字组成的序列W[0],W[1],...,W[43]。该序列的前4个元素W[0],W[1],W[2],W[3]是原始密钥,用于加密运算中的初始密钥。后面40个字分为10组,每组4个字(128bit)分别用于10轮加密运算中的轮密钥加,如下图所示:
上图中,设K=abcdefghijklmnop,则$K_0=a,K_{15}=p$,w[0]$=K_0k_1K_2K_3=abcd$
AES整体的结构如下图所示,其中W[0,3]是指W[0]、W[1]、W[2]和W[3]串联组成的128位密钥。加密的第一轮到第9轮的轮函数一样,包括4个操作,字节代换、行位移、列混合和轮密钥加。最后一轮迭代不执行列混合。另外,在第一轮迭代之前,先将明文和原始密钥进行一次异或加密操作
上图也展示了AES的解密过程,解密过程仍为10轮,每一轮的操作是加密操作的逆操作。由于AES的4个轮操作都是可逆的,因此,解密操作的每一轮就是顺序执行逆行移位、逆字节代换、轮密钥加和逆列混合。同加密操作类似,最后一轮不执行逆列混合,在第1轮解密之前,要执行1次密钥加操作
下面分别介绍AES中一轮的4个操作阶段,这4分操作阶段使输入位得到充分的混淆
AES的字节代换其实就是一个简单的查表操作。AES定义了一个S盒和一个逆S盒
AES的S盒:
把该字节的高4位作为行值,低4位作为列值,取出S盒或者逆S盒中对应的行的元素作为输出。例如,加密时,输出的字节S1为0x12,则查S盒的第0x01行和0x02列,得到值0xc9,然后替换S1原有的0x12为0xc9。状态矩阵经字节代换后的图如下:
逆字节代换也就是查逆S盒来变换,逆S盒如下:
行移位是一个简单的左循环移位操作。当密钥长度为128比特时,状态矩阵的第0行左移0字节,第1行左移1字节,第2行左移2字节,第3行左移3字节,如下图所示:
行移位的逆变换是将状态矩阵中的每一行执行相反的移位操作,例如AES-128中,状态矩阵的第0行右移0字节,第1行右移1字节,第2行右移2字节,第3行右移3字节
列混合变换是通过矩阵相乘来实现的,经行移位后的状态矩阵与固定的矩阵相乘,得到混淆后的状态矩阵,如下图的公式所示:
状态矩阵中的第j列(0 ≤j≤3)的列混合可以表示为:
$$
S'_{0,j} = (2 S_{0,j}) /oplus (3 S_{1,j}) /oplus S_{2,j} /oplus S_{3,j}
S'_{1,j} = S_{0,j} /oplus (2 S_{1,j}) /oplus (3 S_{2,j}) /oplus S_{3,j}
S'_{2,j} = S_{0,j} /oplus S_{1,j} /oplus (2 S_{2,j}) /oplus (3 S_{3,j})
S'_{3,j} = (3 S_{0,j}) /oplus S_{1,j} /oplus S_{2,j} /oplus (2 S_{3,j})
$$
逆向列混合变换可由下图的矩阵乘法定义:
可以验证,逆变换矩阵同正变换矩阵的乘积恰好为单位矩阵
轮密钥加是将128位轮密钥$K_i$同状态矩阵中的数据进行逐位异或操作,如下图所示。其中,密钥$K_i$中每个字W[4i],W[4i+1],W[4i+2],W[4i+3]为32位比特字,包含4个字节,他们的生成算法下面在下面介绍。轮密钥加过程可以看成是字逐位异或的结果,也可以看成字节级别或者位级别的操作。也就是说,可以看成S0 S1 S2 S3 组成的32位字与W[4i]的异或运算
轮密钥加的逆运算同正向的轮密钥加运算完全一致,这是因为异或的逆操作是其自身。轮密钥加非常简单,但却能够影响S数组中的每一位
这个4*4矩阵的每一列的4个字节组成一个字,矩阵4列的4个字依次命名为W[0]、W[1]、W[2]和W[3],它们构成一个以字为单位的数组W。例如,设密钥K=abcdefghijklmnop,则$K_0 = a,K_1 = b,K_2 = c,K_3 = d$,W[0] = abcd
接着,对W数组扩充40个新列,构成总共44列的扩展密钥数组。新列以如下的递归方式产生:
W[i]=W[i-4]⨁W[i-1] W[i]=W[i-4]⨁T(W[i-1])
其中,函数T由3部分组成:字循环、字节代换和轮常量异或,这3部分的作用分别如下:
轮常量Rcon[j]是一个字,其值见下表:
j | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Rcon[j] | 01 00 00 00 | 02 00 00 00 | 04 00 00 00 | 08 00 00 00 | 10 00 00 00 |
j | 6 | 7 | 8 | 9 | 10 |
Rcon[j] | 20 00 00 00 | 40 00 00 00 | 80 00 00 00 | 1B 00 00 00 | 36 00 00 00 |
举个例子,设初始的128为密钥为: 3C A1 0B 21 57 F0 19 16 90 2E 13 80 AC C1 07 BD
,那么4个初始值为
W[0] = 3C A1 0B 21 W[1] = 57 F0 19 16 W[2] = 90 2E 13 80 W[3] = AC C1 07 BD
下面求扩展的第1轮的子密钥(W[4],W[5],W[6],W[7])
由于4是4的倍数,所以: W[4] = W[0] ⨁ T(W[3])
,T(W[3])的计算步骤如下:
AC C1 07 BD
变成 C1 07 BD AC
C1 07 BD AC
作为S盒的输入,输出为 78 C5 7A 91
78 C5 7A 91
与第一轮轮常量Rcon[1]进行异或运算,将得到 79 C5 7A 91
,因此, T(W[3]) = 79 C5 7A 91
,故 W[4] = 3C A1 0B 21 ⨁ 79 C5 7A 91 = 45 64 71 B0
其余3个子密钥段的计算如下:
W[5] = W[1] ⨁ W[4] = 57 F0 19 16 ⨁ 45 64 71 B0 = 12 94 68 A6 W[6] = W[2] ⨁ W[5] =90 2E 13 80 ⨁ 12 94 68 A6 = 82 BA 7B 26 W[7] = W[3] ⨁ W[6] = AC C1 07 BD ⨁ 82 BA 7B 26 = 2E 7B 7C 9B
所以,第一轮的密钥为 45 64 71 B0 12 94 68 A6 82 BA 7B 26 2E 7B 7C 9B
由于Java有自带的函数,因此可以直接调用
首先生成密钥,密钥是 SecretKey
类型的对象
static final String ALGORITHM = "AES"; public static SecretKey generateKey() throws NoSuchAlgorithmException { // 生成密钥 KeyGenerator secretGenerator = KeyGenerator.getInstance(ALGORITHM); SecureRandom secureRandom = new SecureRandom(); secretGenerator.init(secureRandom); SecretKey secretKey = secretGenerator.generateKey(); return secretKey; }
首先创建密钥生成器 KeyGenerator
对象,产生的是AES算法的密钥,因此传入参数AES。这里使用 安全的随机数 SecureRandom
作为参数传入密钥生成器的 init()
函数中,最后调用密钥生成器的 generateKey()
方法产生密钥对象 secretKey
然后实现加密方法和解密方法
static Charset charset = Charset.forName("UTF-8"); public static byte[] encrypt(String content, SecretKey secretKey) throws InvalidKeyException, NoSuchAlgorithmException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException { // 加密 return aes(content.getBytes(charset),Cipher.ENCRYPT_MODE,secretKey); } public static String decrypt(byte[] contentArray, SecretKey secretKey) throws InvalidKeyException, NoSuchAlgorithmException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException { // 解密 byte[] result = aes(contentArray,Cipher.DECRYPT_MODE,secretKey); return new String(result,charset); }
加密方法传入的是需要加密的明文 content
以及密钥;解密方法传入的是密文 contentArray
以及密钥
最后实现aes函数
private static byte[] aes(byte[] contentArray, int mode, SecretKey secretKey) throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, BadPaddingException { Cipher cipher = Cipher.getInstance(ALGORITHM); cipher.init(mode, secretKey); byte[] result = cipher.doFinal(contentArray); return result; }
完整代码如下:
import java.nio.charset.Charset; import java.security.InvalidKeyException; import java.security.NoSuchAlgorithmException; import java.security.SecureRandom; import javax.crypto.BadPaddingException; import javax.crypto.Cipher; import javax.crypto.IllegalBlockSizeException; import javax.crypto.KeyGenerator; import javax.crypto.NoSuchPaddingException; import javax.crypto.SecretKey; public class Aes { static final String ALGORITHM = "AES"; public static SecretKey generateKey() throws NoSuchAlgorithmException { // 生成密钥 KeyGenerator secretGenerator = KeyGenerator.getInstance(ALGORITHM); SecureRandom secureRandom = new SecureRandom(); secretGenerator.init(secureRandom); SecretKey secretKey = secretGenerator.generateKey(); return secretKey; } static Charset charset = Charset.forName("UTF-8"); public static byte[] encrypt(String content, SecretKey secretKey) throws InvalidKeyException, NoSuchAlgorithmException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException { // 加密 return aes(content.getBytes(charset),Cipher.ENCRYPT_MODE,secretKey); } public static String decrypt(byte[] contentArray, SecretKey secretKey) throws InvalidKeyException, NoSuchAlgorithmException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException { // 解密 byte[] result = aes(contentArray,Cipher.DECRYPT_MODE,secretKey); return new String(result,charset); } private static byte[] aes(byte[] contentArray, int mode, SecretKey secretKey) throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, BadPaddingException { Cipher cipher = Cipher.getInstance(ALGORITHM); cipher.init(mode, secretKey); byte[] result = cipher.doFinal(contentArray); return result; } public static void main(String[] args) { String content = "你好,我很喜欢加密算法"; SecretKey secretKey; try { long timeStart = System.currentTimeMillis(); secretKey = generateKey(); byte[] encryptResult = encrypt(content, secretKey); long timeEnd = System.currentTimeMillis(); System.out.println("加密后的结果为:" + new String(encryptResult,charset)); String decryptResult = decrypt(encryptResult,secretKey); System.out.println("解密后的结果为:" + decryptResult); System.out.println("加密用时:" + (timeEnd - timeStart)); } catch (NoSuchAlgorithmException | InvalidKeyException | NoSuchPaddingException | IllegalBlockSizeException | BadPaddingException e) { e.printStackTrace(); } } }
运行GIF图如下所示: