java中锁是个很重要的概念,当然这里的前提是你会涉及并发编程。
除了语言提供的锁关键字 synchronized和volatile之外,jdk还有其他多种实用的锁。
不过这些锁大多都是基于AQS队列同步器。ReadWriteLock 读写锁就是其中一个。
读写锁的含义是,将读锁与写锁分开对待,读锁可以任意个一起读,因为读并不涉及数据变更,而遇到写锁后,所有后续的读写都将被阻塞。这特性有什么用呢?比如我们有一个缓存,我们可以用它来提高访问速度,但是当数据变更时,怎样能保证能读到准确的数据?
在没有读写锁之前,我们可以使用wait/notify机制,我们可以以写锁作为一个同步介质,当写锁被占用时,读只能等待,写操作完成后,通知所有读继续。这看起来不那么好实现!
当有了读写锁后,我们就不需要这么麻烦了,只需要读操作使用读锁,写操作获取写锁操作。大家可能会想,既然都要获取锁,那和其他锁有什么差别呢,一般看到锁咱们都会想到串行,阻塞。但其实读写锁不是这样的。看起来你是每次都获取读锁,但其实单纯的读锁并不会阻塞线程,所以同样是并行无阻,读锁只有在一种情况下会阻塞,那就是写锁被某线程占用时。因为写锁被占用则意味着,数据可能马上发生变化,如果此再允许读操作任意进行的话,多半可能读到写了一半或者是老数据,而这简直太糟了。而写锁则只每次都会真正进行后续操作的阻塞动作,使写操作保证强一致性。
好了,以上就是咱们从概念上来理解读写锁。
而实际上呢?ReadWriteLock只是一个接口,而其实现则可能是n多的。我们就以jdk实现的 ReentrantReadWriteLock 为契机,看一下读写锁的实现吧。
在介绍 ReetrantReadWriteLock 之前,我们要先简单说下 ReentrantLock 重入锁,从字面意思理解,就是可重新进入的锁。那么,到底是什么意思呢?我们想一下,如果我们有2个资源锁可用,那么,如果我在本线程上上锁两次,是不是资源就没有了呢,那第三次进行锁获取的时候,是不是就把自己给锁死了呢?想想应该是这样的,但是为啥平时咱们都遇不到这种情况呢?原因就在于可重入性。可重入的意思是说,如果当前线程进行多次加锁操作,那么无论如何它自己都是可以进入的。简单从实现来说就是,锁会排除当前线程,从而避免自身阻塞。这些需求看起来很理所当然,但是咱们自己实现的时候可能会因为场景不一样,从而不一定需要这种特性呢。syncronized也是一种重入锁。好了,说了这么多,还是没有看到 ReetrantLock是怎么实现的!
用个不恰当的图描绘下:
我们来看下源码就一目了然了。
/** * Fair version of tryAcquire */ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { // 第一次进入获取到锁后,标记获得锁的线程,后续判定重入 setExclusiveOwnerThread(current); return true; } } // 重入锁判定,否则失败 else if (current == getExclusiveOwnerThread()) { // 最多可重入 int 次 int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } }
重入锁介绍完后,咱们可以安心的来说说 ReentrantReadWriteLock了。该读写锁也是一种可重入锁。它要实现的特性就是,读读锁无阻塞,写锁必阻塞(包括写读锁/写写锁),读写锁阻塞(需等待读锁释放后才能获取写锁从而保证无脏读)。
从上面可以看出,读和写是两个锁,但是他们的状态却是互相关联的,那怎样设计其数据结构呢?用两个变量去推导往往不太可行,因为其本身就是锁,如果再用两个变量去判定锁状态,那么又如何保证变量自身的可靠性呢?ReentrantReadWriteLock 是通过一个状态变量来控制的,具体为 高16位保存读锁状态,低16位保存写锁状态,而在改变状态时,使用cas保证写入的可靠性。(其实这里可以看出,锁个数不应该超过16位即65536个,这种锁数量已经完全被忽略掉了)。有了数据结构,咱们再看下怎么控制读写互联。读锁的获取,写锁没被占用时,即低位为0时,高位大于0即可代表获取了读锁,所以,读锁是n个可用的。而写锁的获取,则要依赖高低位判定了,高位大于0,即代表还有读锁存在,不能进入,如果高位为0,也不一定可进入,低位不为0则代表有写锁在占用,所以只有高低位都为0时,写锁才可用。
下面,来看下读写锁的具体实现!
来个例子先:
public class ReadWriteLockTest { private ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock(); /** * 读锁 */ private Lock r = reentrantReadWriteLock.readLock(); /** * 写锁 */ private Lock w = reentrantReadWriteLock.writeLock(); /** * 执行线程池 */ private ExecutorService executorService = Executors.newCachedThreadPool(); @Test public void testReadLock() { for (int i = 0; i < 10; i++) { Thread readWorker = new ReadWorker(); executorService.submit(readWorker); } waitForExecutorFinish(); } @Test public void testWriteLock() { for (int i = 0; i < 10; i++) { Thread writeWorker = new WriteWorker(); executorService.submit(writeWorker); } waitForExecutorFinish(); } @Test public void testReadWriteLock() { for (int i = 0; i < 10; i++) { Thread readWorker = new ReadWorker(); Thread writeWorker = new WriteWorker(); executorService.submit(readWorker); executorService.submit(writeWorker); } waitForExecutorFinish(); } /** * 线程模拟完成后,关闭线程池 */ private void waitForExecutorFinish() { executorService.shutdown(); try { executorService.awaitTermination(100, TimeUnit.SECONDS); } catch (InterruptedException e) { e.printStackTrace(); } } private final class ReadWorker extends Thread { @Override public void run() { r.lock(); try { SleepUtils.second(1); System.out.println(System.currentTimeMillis() + ": " + Thread.currentThread().getName() + " reading..."); SleepUtils.second(1); } finally { r.unlock(); } } } private final class WriteWorker extends Thread { @Override public void run() { w.lock(); try { SleepUtils.second(1); System.out.println(System.currentTimeMillis() + ": " + Thread.currentThread().getName() + " writing..."); SleepUtils.second(1); } finally { w.unlock(); } } } }
可以看到 testReadLock(), 无阻塞,立即完成10个读任务!
而 testWriteLock(),则是全部阻塞执行,20秒完成串行10个任务!
而 testReadWriteLock(), 则是 读锁与写锁交替执行,在执行写锁时,所有锁等待,在执行读锁时,可能存在多个锁同时运行!执行结果样例如下:
1543816105277: pool-1-thread-1 reading... 1543816107278: pool-1-thread-2 writing... 1543816109278: pool-1-thread-20 writing... 1543816111278: pool-1-thread-16 writing... 1543816113279: pool-1-thread-12 writing... 1543816115279: pool-1-thread-8 writing... 1543816117280: pool-1-thread-19 reading... 1543816117280: pool-1-thread-15 reading... 1543816119280: pool-1-thread-4 writing... 1543816121280: pool-1-thread-18 writing... 1543816123281: pool-1-thread-3 reading... 1543816123281: pool-1-thread-7 reading... 1543816125287: pool-1-thread-14 writing... 1543816127290: pool-1-thread-6 writing... 1543816129290: pool-1-thread-10 writing... 1543816131290: pool-1-thread-11 reading... 1543816131290: pool-1-thread-13 reading... 1543816131290: pool-1-thread-9 reading... 1543816131290: pool-1-thread-5 reading... 1543816131290: pool-1-thread-17 reading...
ok, 现象已经展示了,是时候透过现象看本质了!
1. 读锁的获取过程 r.lock(), 其实现为 ReadLock!
public void lock() { // 调用 AQS 的 acquireShared() 方法,进行统一调度 sync.acquireShared(1); } // AQS 获取共享读锁 public final void acquireShared(int arg) { // 调用 ReentrantReadWriteLock.Sync.tryAcquireShared(), 定义锁获取方式 if (tryAcquireShared(arg) < 0) doAcquireShared(arg); } // 获取读锁,unused 传参未使用,直接使用内置的高位加1方式处理 protected final int tryAcquireShared(int unused) { /* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */ Thread current = Thread.currentThread(); int c = getState(); // 写锁使用中,则直接获取失败 if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; int r = sharedCount(c); // 读锁任意获取,除了超过最大限制 if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } // 对读锁阻塞情况,进行处理 return fullTryAcquireShared(current); } // 获取低位数,即写锁状态值 static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; } // 获取高位数,即读锁状态值 static int sharedCount(int c) { return c >>> SHARED_SHIFT; } /** * Full version of acquire for reads, that handles CAS misses * and reentrant reads not dealt with in tryAcquireShared. */ final int fullTryAcquireShared(Thread current) { /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */ HoldCounter rh = null; for (;;) { int c = getState(); if (exclusiveCount(c) != 0) { if (getExclusiveOwnerThread() != current) return -1; // else we hold the exclusive lock; blocking here // would cause deadlock. } else if (readerShouldBlock()) { // Make sure we're not acquiring read lock reentrantly if (firstReader == current) { // assert firstReaderHoldCount > 0; } else { if (rh == null) { rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) { rh = readHolds.get(); if (rh.count == 0) readHolds.remove(); } } if (rh.count == 0) return -1; } } if (sharedCount(c) == MAX_COUNT) throw new Error("Maximum lock count exceeded"); // 验证通过,cas更新锁状态,使用 SHARED_UNIT 进行高位加1 if (compareAndSetState(c, c + SHARED_UNIT)) { if (sharedCount(c) == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { if (rh == null) rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; cachedHoldCounter = rh; // cache for release } return 1; } } }
以上是获取读锁的过程,其实际控制很简单,只是多了很多的状态统计,所以看起来复杂!
2. 下面,来看写锁的获取过程,WriteLock.lock()
public void lock() { // AQS获取独占锁 sync.acquire(1); } // AQS 锁调度 public final void acquire(int arg) { // 如果获取锁失败,则加入到等待队列中 if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); } // ReentrantReadWriteLock.Sync.tryAcquire(), 写锁获取过程 protected final boolean tryAcquire(int acquires) { /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. */ Thread current = Thread.currentThread(); int c = getState(); int w = exclusiveCount(c); // 如果是0,则说明不存在读写锁,直接成功 // 否则分有读锁和有写锁两种情况判断 if (c != 0) { // (Note: if c != 0 and w == 0 then shared count != 0) // 存在读锁,或者不是当前线程(重入),则直接失败 if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w + exclusiveCount(acquires) > MAX_COUNT) throw new Error("Maximum lock count exceeded"); // Reentrant acquire setState(c + acquires); return true; } // cas 更新 state if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) return false; setExclusiveOwnerThread(current); return true; } /** * Creates and enqueues node for current thread and given mode. * * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared * @return the new node */ private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; } // AQS 的锁入队列操,从队列中进行锁获取,如果获取失败,则产线一个中断标志 final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); // 这里是公平锁的实现方式,只会从队列头获取锁 if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } // 阻塞判定,响应中断 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
ok, 读写锁的获取已经完成,再来看一下释放的过程!
3. 读锁的释放 ReadLock.unlock()
public void unlock() { // AQS 的释放控制 sync.releaseShared(1); } // AQS 释放锁 public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false; } // ReentrantReadWriteLock.Sync.tryReleaseShared() 自定义释放 protected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); if (firstReader == current) { // assert firstReaderHoldCount > 0; if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; } for (;;) { int c = getState(); int nextc = c - SHARED_UNIT; // cas更新状态,每次减1,直到为0,锁才算真正释放 if (compareAndSetState(c, nextc)) // Releasing the read lock has no effect on readers, // but it may allow waiting writers to proceed if // both read and write locks are now free. return nextc == 0; } } /** * Release action for shared mode -- signals successor and ensures * propagation. (Note: For exclusive mode, release just amounts * to calling unparkSuccessor of head if it needs signal.) */ private void doReleaseShared() { /* * Ensure that a release propagates, even if there are other * in-progress acquires/releases. This proceeds in the usual * way of trying to unparkSuccessor of head if it needs * signal. But if it does not, status is set to PROPAGATE to * ensure that upon release, propagation continues. * Additionally, we must loop in case a new node is added * while we are doing this. Also, unlike other uses of * unparkSuccessor, we need to know if CAS to reset status * fails, if so rechecking. */ for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; if (ws == Node.SIGNAL) { if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases unparkSuccessor(h); } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } if (h == head) // loop if head changed break; } }
4. 读锁的释放, WriteLock.unlock()
public void unlock() { // AQS 释放控制 sync.release(1); } // AQS public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; // 释放锁 if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } // Sync.tryRelease() protected final boolean tryRelease(int releases) { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); int nextc = getState() - releases; // 如果写锁状态为0,则意味着当前线程完全释放锁,将 owner 线各设置为null boolean free = exclusiveCount(nextc) == 0; if (free) setExclusiveOwnerThread(null); setState(nextc); return free; } /** * Wakes up node's successor, if one exists. * * @param node the node */ private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } // 调用 LockSupport 释放锁 if (s != null) LockSupport.unpark(s.thread); }
综上,读写锁的简要解析就算完成了。 其主要使用 AQS 的基础组件,进行锁调度! 使用CAS进行状态的安全设置! 而锁的阻塞,则是使用 LockSupport 工具组件进行实际阻塞!