Evaluate the value of an arithmetic expression in Reverse Polish Notation.
Valid operators are +, -, *, /. Each operand may be an integer or another expression.
Note:
Division between two integers should truncate toward zero.
The given RPN expression is always valid. That means the expression would always evaluate to a result and there won't be any divide by zero operation.
Example 1:
Input: ["2", "1", "+", "3", "*"] Output: 9 Explanation: ((2 + 1) * 3) = 9
Example 2:
Input: ["4", "13", "5", "/", "+"] Output: 6 Explanation: (4 + (13 / 5)) = 6
Example 3:
Input: ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"] Output: 22 Explanation: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
难度:medium
题目:
求算术表达式在反波兰表示法中的值。
有效的操作符是+、-、*、/。每个操作数可以是一个整数或另一个表达式。
思路:栈
Runtime: 6 ms, faster than 91.00% of Java online submissions for Evaluate Reverse Polish Notation.
Memory Usage: 36.6 MB, less than 100.00% of Java online submissions for Evaluate Reverse Polish Notation.
class Solution { public int evalRPN(String[] tokens) { Stack<Integer> stack = new Stack<>(); int tNum = 0; for (int i = 0; i < tokens.length; i++) { switch(tokens[i]) { case "+" : stack.push(stack.pop() + stack.pop()); break; case "-" : tNum = stack.pop(); stack.push(stack.pop() - tNum); break; case "*" : stack.push(stack.pop() * stack.pop()); break; case "/" : tNum = stack.pop(); stack.push(stack.pop() / tNum); break; default : stack.push(Integer.parseInt(tokens[i])); } } return stack.pop(); } }