Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +, - and *.
Example 1:
Input: "2-1-1" Output: [0, 2] Explanation: ((2-1)-1) = 0 (2-(1-1)) = 2
Example 2:
Input: "2*3-4*5" Output: [-34, -14, -10, -10, 10] Explanation: (2*(3-(4*5))) = -34 ((2*3)-(4*5)) = -14 ((2*(3-4))*5) = -10 (2*((3-4)*5)) = -10 (((2*3)-4)*5) = 10
难度:medium
题目:给定一包含数字和操作符的字符串,计算并返回其所有数字与操作符组合的结果。有效的操作符为+,-,*
思路:类似unique binary tree, generate parentheses. 卡特兰数。
Runtime: 2 ms, faster than 84.52% of Java online submissions for Different Ways to Add Parentheses.
Memory Usage: 38.6 MB, less than 18.35% of Java online submissions for Different Ways to Add Parentheses.
class Solution { public List<Integer> diffWaysToCompute(String input) { return diffWaysToCompute(input, 0, input.length()); } private List<Integer> diffWaysToCompute(String str, int start, int end) { if (!hasOperator(str, start, end)) { List<Integer> result = new ArrayList<>(); result.add(Integer.parseInt(str.substring(start, end))); return result; } List<Integer> root = new ArrayList<>(); for (int i = start; i < end; i++) { char c = str.charAt(i); if ('+' == c || '-' == c || '*' == c) { List<Integer> left = diffWaysToCompute(str, start, i); List<Integer> right = diffWaysToCompute(str, i + 1, end); for (Integer l: left) { for (Integer r : right) { if ('+' == c) { root.add(l + r); } else if ('-' == c) { root.add(l - r); } else if ('*' == c) { root.add(l * r); } } } } } return root; } private boolean hasOperator(String s, int start, int end) { for (int i = start; i < end; i++) { char c = s.charAt(i); if ('+' == c || '-' == c || '*' == c) { return true; } } return false; } }