其它经常问的HashMap底层实现原理,常规的多线程问题考的太多了,没什么新意就不写了
1.面试主要分为两块:一块是考查工程师对基础知识(包括了技术广度、深度、对技术的热情度等)的掌握程度,因为 基础知识决定了一个技术人员发展的上限 ;另一块是考察工程师的工程能力,比如:做过哪些项目?遇到最难的问题怎样解决的?说说最有成就感的一项任务? 工程能力是考察工程师当下能为公司带来的利益 。其它考核方面:抗压性、合作能力...暂且不说。
2.Java只是一门语言,即使是Java工程师也不能局限于Java,要从面向对象语言本身,甚至从整个计算机体系,从工程实际出发看Java。
3.很多知识在一般公司的开发中是用不到的,常有人戏称:“面试造火箭,工作拧螺丝”,但这只是通常情况下公司对程序员的标准——迅速产出,完成任务。个人观点:工程师为了自己职业的发展不能局限于公司对自己的要求,不能停留在应用层面,要能够很好地掌握基础知识,要多看源码,自己多实践,学成记得产出,比如多为开源社区贡献代码,帮助初学者指路等。
有没有发现一个有意思的事情:“面试造火箭,工作拧螺丝”的背后其实是考察者内心深处普遍都认可基础知识的重要性(这一点仅为个人观点,不展开讲哈)。
1. 这题是一道思想题目,天天会碰到private,有没有想过这个问题?谈谈对java设计的认识程度,主要抓住两点:1.java的private修饰符并不是为了绝对安全性设计的,更多是对用户常规使用java的一种约束;2.从外部对对象进行常规调用时,能够看到清晰的类结构。
2. 先说结论: 基类静态代码块,基类静态成员字段(并列优先级,按照代码中出现的先后顺序执行,且只有第一次加载时执行)——>派生类静态代码块,派生类静态成员字段(并列优先级,按照代码中出现的先后顺序执行,且只有第一次加载时执行)——>基类普通代码块,基类普通成员字段(并列优点级,按代码中出现先后顺序执行)——>基类构造函数——>派生类普通代码块,派生类普通成员字段(并列优点级,按代码中出现先后顺序执行)——>派生类构造函数
class Log { public static String initLog(String log) { System.out.println(log);return null; } } /** * 基类 */ class Base { static { System.out.println("Base Static Block 1"); } private static String staticValue = Log.initLog("Base Static Fiels"); static { System.out.println("Base Static Block 2"); } { System.out.println("Base Normal Block 1"); } private String value = Log.initLog("Base Normal Field"); { System.out.println("Base Normal Block 2"); } Base() { System.out.println("Base Constructor"); } } /** * 派生类 */ public class Derived extends Base { static { System.out.println("Static Block 1"); } private static String staticValue = Log.initLog("Static Fiels"); static { System.out.println("Static Block 2"); } { System.out.println("Normal Block 1"); } private String value = Log.initLog("Normal Field"); { System.out.println("Normal Block 2"); } Derived() { System.out.println("Derived Constructor"); } /** * 主线程 */ public static void main(String[] args) { Derived derived = new Derived(); }
Base Static Block 1 Base Static Fiels Base Static Block 2 Static Block 1 Static Fiels Static Block 2 Base Normal Block 1 Base Normal Field Base Normal Block 2 Base Constructor Normal Block 1 Normal Field Normal Block 2 Derived Constructor
3. 方法区是jvm规范里要求的,永久区是Hotspot虚拟机对方法区的具体实现, 前者是规范,后者是实现方式 。jdk1.8作了改变。本题看看对方在思想层面对jvm的理解程度,很基础的一个题目。
4. 文件中有几个类编译后就有几个class文件。
5. 成员变量是可以不经初始化的,在类加载过程的准备阶段即可给它赋予默认值,但局部变量使用前需要显式赋予初始值,javac不是推断不出不可以这样做,而是没有这样做,对于成员变量而言,其赋值和取值访问的先后顺序具有不确定性,对于成员变量可以在一个方法调用前赋值,也可以在方法调用后进行,这是运行时发生的,编译器确定不了,交给jvm去做比较合适。而对于局部变量而言,其赋值和取值访问顺序是确定的。 这样设计是一种约束 ,尽最大程度减少使用者犯错的可能(假使局部变量可以使用默认值,可能总会无意间忘记赋值,进而导致不可预期的情况出现)。
6. ReadWriteRock 读写锁,使用场景可分为读/读、读/写、写/写,除了读和读之间是共享的,其它都是互斥的,接着会讨论下怎样实现互斥锁和同步锁的, 想了解对方对AQS,CAS的掌握程度,技术学习的深度。
7. Semaphore拿到执行权的线程之间是否互斥,Semaphore、CountDownLatch、CyclicBarrier、Exchanger 为java并发编程的4个辅助类,面试中常问的 CountDownLatch CyclicBarrier之间的区别,面试者肯定是经常碰到的, 所以问起来意义不大,Semaphore问的相对少一些,有些知识点如果没有使用过还是会忽略,Semaphore可有多把锁,可允许多个线程同时拥有执行权,这些有执行权的线程如并发访问同一对象,会产生线程安全问题。
8. 写一个你认为最好的单例模式, 这题面试者都可能遇到过,也算是工作中最常遇到的设计模式之一,想考察面试者对经常碰到的题目的理解深度,单例一共有几种实现方式:饿汉、懒汉、静态内部类、枚举、双检锁,要是写了简单的懒汉式可能就会问:要是多线程情况下怎样保证线程安全呢,面试者可能说双检锁,那么聊聊为什么要两次校验,接着会问光是双检锁还会有什么问题,这时候基础好的面试者就会说了:对象在定义的时候加上volatile关键字,接下来会继续引申讨论下原子性和可见性、java内存模型、类的加载过程。
其实没有最好,枚举方式、静态内部类、双检锁都是可以的,就想听下对不同的单例写法认识程度,写个双检锁的方式吧:
public class Singleton { private Singleton() { } private volatile static Singleton instance; public static Singleton getInstance() { if (null == instance) { synchronized (Singleton.class) { if (null == instance) { instance = new Singleton(); } } } return instance; } }
9. B树和B+树,这题既问mysql索引的实现原理,也问数据结构基础,首先从二叉树说起,因为会产生退化现象,提出了平衡二叉树,再提出怎样让每一层放的节点多一些来减少遍历高度,引申出m叉树,m叉搜索树同样会有退化现象,引出m叉平衡树,也就是B树,这时候每个节点既放了key也放了value,怎样使每个节点放尽可能多的key值,以减少遍历高度呢(访问磁盘次数),可以将每个节点只放key值,将value值放在叶子结点,在叶子结点的value值增加指向相邻节点指针,这就是优化后的B+树。然后谈谈数据库索引失效的情况,为什么给离散度低的字段(如性别)建立索引是不可取的,查询数据反而更慢,如果将离散度高的字段和性别建立联合索引会怎样,有什么需要注意的?
10. 生产者消费者模式,synchronized锁住一个LinkedList,一个生产者,只要队列不满,生产后往里放,一个消费者只要队列不空,向外取,两者通过wait()和notify()进行协调,写好了会问怎样提高效率,最后会聊一聊消息队列设计精要思想及其使用。
11. 写一个死锁,觉得这个问题真的很不错,经常说的死锁四个条件,背都能背上,那写一个看看,思想为:定义两个ArrayList,将他们都加上锁A,B,线程1,2,1拿住了锁A ,请求锁B,2拿住了锁B请求锁A,在等待对方释放锁的过程中谁也不让出已获得的锁。
public class DeadLock { public static void main(String[] args) { final List<Integer> list1 = Arrays.asList(1, 2, 3); final List<Integer> list2 = Arrays.asList(4, 5, 6); new Thread(new Runnable() { @Override public void run() { synchronized (list1) { for (Integer i : list1) { System.out.println(i); } try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } synchronized (list2) { for (Integer i : list2) { System.out.println(i); } } } } }).start(); new Thread(new Runnable() { @Override public void run() { synchronized (list2) { for (Integer i : list2) { System.out.println(i); } try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } synchronized (list1) { for (Integer i : list1) { System.out.println(i); } } } } }).start(); } }
12. cpu 100%怎样定位,这题是一个应用性题目,网上搜一下即可,比较常见,说实话,把这题放进来有点后悔。
13. String a = "ab"; String b = "a" + "b"; a ,b 是相等的(各位要写代码验证一下,我看到有人写了错误答案)。常规的问法是new一个对象赋给变量,问:这行表达式创建了几个对象,但这样的题目太常见。
14. int a = 1; 是原子性操作。
15. for循环直接删除ArrayList中的特定元素是错的,不同的for循环会发生不同的错误,泛型for会抛出 ConcurrentModificationException,普通的for想要删除集合中重复且连续的元素,只能删除第一个。
错误原因:打开JDK的ArrayList源码,看下ArrayList中的remove方法(注意ArrayList中的remove有两个同名方法,只是入参不同,这里看的是入参为Object的remove方法)是怎么实现的,一般情况下程序的执行路径会走到else路径下最终调用faseRemove方法,会执行System.arraycopy方法,导致删除元素时涉及到数组元素的移动。针对普通for循环的错误写法,在遍历第一个字符串b时因为符合删除条件,所以将该元素从数组中删除,并且将后一个元素移动(也就是第二个字符串b)至当前位置,导致下一次循环遍历时后一个字符串b并没有遍历到,所以无法删除。针对这种情况可以倒序删除的方式来避免
解决方案:用 Iterator。
List<String> list = new ArrayList(Arrays.asList("a", "b", "b" , "c", "d")); Iterator<String> iterator = list.iterator(); while(iterator.hasNext()) { String element = iterator.next(); if(element.equals("b")) { iterator.remove(); }
将本问题扩展一下,下面的代码可能会出现什么问题?
ArrayList<String> array = new ArrayList<String>(); array.add(1,"hello world");
16. 第一步 :线程池判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则执行第二步。
第二步 :线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里进行等待。如果工作队列满了,则执行第三步。
第三步 :线程池判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。
17. 抽象队列同步器AQS(AbstractQueuedSychronizer),如果说java.util.concurrent的基础是CAS的话,那么AQS就是整个Java并发包的核心了,ReentrantLock、CountDownLatch、Semaphore等都用到了它。AQS实际上以双向队列的形式连接所有的Entry,比方说ReentrantLock,所有等待的线程都被放在一个Entry中并连成双向队列,前面一个线程使用ReentrantLock好了,则双向队列实际上的第一个Entry开始运行。AQS定义了对双向队列所有的操作,而只开放了tryLock和tryRelease方法给开发者使用,开发者可以根据自己的实现重写tryLock和tryRelease方法,以实现自己的并发功能。
比较并替换CAS(Compare and Swap),假设有三个操作数:内存值V、旧的预期值A、要修改的值B,当且仅当预期值A和内存值V相同时,才会将内存值修改为B并返回true,否则什么都不做并返回false,整个比较并替换的操作是一个原子操作。CAS一定要volatile变量配合,这样才能保证每次拿到的变量是主内存中最新的相应值,否则旧的预期值A对某条线程来说,永远是一个不会变的值A,只要某次CAS操作失败,下面永远都不可能成功。
CAS虽然比较高效的解决了原子操作问题,但仍存在三大问题。
18. synchronized (this)原理:涉及两条指令:monitorenter,monitorexit;再说同步方法,从同步方法反编译的结果来看,方法的同步并没有通过指令monitorenter和monitorexit来实现,相对于普通方法,其常量池中多了ACC_SYNCHRONIZED标示符。
JVM就是根据该标示符来实现方法的同步的:当方法被调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。
这个问题会接着追问:java对象头信息,偏向锁,轻量锁,重量级锁及其他们相互间转化。
19. 理解volatile关键字的作用的前提是要理解Java内存模型,volatile关键字的作用主要有两点:
从实践角度而言,volatile的一个重要作用就是和CAS结合,保证了原子性,详细的可以参见java.util.concurrent.atomic包下的类,比如AtomicInteger。
20. AOP 和 IOC是Spring精华部分,AOP可以看做是对OOP的补充,对代码进行横向的扩展,通过代理模式实现,代理模式有静态代理,动态代理,Spring利用的是动态代理,在程序运行过程中将增强代码织入原代码中。IOC是控制反转,将对象的控制权交给Spring框架,用户需要使用对象无需创建,直接使用即可。AOP和IOC最可贵的是它们的思想。
21. 什么是循环依赖,怎样检测出循环依赖,Spring循环依赖有几种方式,使用基于setter属性的循环依赖为什么不会出现问题,接下来会问:Bean的生命周期。
22. 上一张图,从这张图去理解
<img src="https://pic3.zhimg.com/v2-976a59b61d42ddbf93ceb26aa3ba44e6_b.jpg" data-caption="" data-size="normal" data-rawwidth="860" data-rawheight="406" data-default-watermark-src="https://pic2.zhimg.com/v2-78a7d1f6188d0f2e45c45cd9d7ca5e01_b.jpg" class="origin_image zh-lightbox-thumb" width="860" data-original="https://pic3.zhimg.com/v2-976a59b61d42ddbf93ceb26aa3ba44e6_r.jpg">
23. 先上结论:重复性较强的字段,不适合添加索引。mysql给离散度低的字段,比如性别设置索引,再以性别作为条件进行查询反而会更慢。
一个表可能会涉及两个数据结构(文件),一个是表本身,存放表中的数据,另一个是索引。索引是什么?它就是把一个或几个字段(组合索引)按规律排列起来,再附上该字段所在行数据的物理地址(位于表中)。比如我们有个字段是年龄,如果要选取某个年龄段的所有行,那么一般情况下可能需要进行一次全表扫描。但如果以这个年龄段建个索引,那么索引中会按年龄值根据特定数据结构建一个排列,这样在索引中就能迅速定位,不需要进行全表扫描。为什么性别不适合建索引呢?因为访问索引需要付出额外的IO开销,从索引中拿到的只是地址,要想真正访问到数据还是要对表进行一次IO。假如你要从表的100万行数据中取几个数据,那么利用索引迅速定位,访问索引的这IO开销就非常值了。但如果是从100万行数据中取50万行数据,就比如性别字段,那你相对需要访问50万次索引,再访问50万次表,加起来的开销并不会比直接对表进行一次完整扫描小。
当然如果把性别字段设为表的聚集索引,那么就肯定能加快大约一半该字段的查询速度了。聚集索引指的是表本身数据按哪个字段的值来进行排序。因此,聚集索引只能有一个,而且使用聚集索引不会付出额外IO开销。当然你得能舍得把聚集索引这么宝贵资源用到性别字段上。
可以根据业务场景需要,将性别和其它字段建立联合索引,比如时间戳,但是建立索引记得把时间戳字段放在性别前面。