转载

SpringBoot+Mybatis+ Druid+PageHelper 实现多数据源并分页

前言

本篇文章主要讲述的是 SpringBoot 整合 MybatisDruidPageHelper 并实现多数据源和分页。其中SpringBoot整合Mybatis这块,在之前的的一篇文章中已经讲述了,这里就不过多说明了。重点是讲述在多数据源下的如何配置使用Druid和PageHelper 。

Druid介绍和使用

在使用 Druid 之前,先来简单的了解下Druid。

Druid是一个数据库连接池。Druid可以说是目前最好的数据库连接池!因其优秀的功能、性能和扩展性方面,深受开发人员的青睐。

Druid已经在阿里巴巴部署了超过600个应用,经过一年多生产环境大规模部署的严苛考验。Druid是阿里巴巴开发的号称为监控而生的数据库连接池!

同时Druid不仅仅是一个数据库连接池,Druid 核心主要包括三部分:

  • 基于Filter-Chain模式的插件体系。

  • DruidDataSource 高效可管理的数据库连接池。

  • SQLParser

Druid的主要功能如下:

介绍方面这块就不再多说,具体的可以看官方文档。

那么开始介绍Druid如何使用。

首先是Maven依赖,只需要添加druid这一个jar就行了。

<dependency>
         <groupId>com.alibaba</groupId>
         <artifactId>druid</artifactId>
         <version>1.1.8</version>
  </dependency>

配置方面,主要的只需要在 application.propertiesapplication.yml 添加如下就可以了。

说明:因为这里我是用来两个数据源,所以稍微有些不同而已。Druid 配置的说明在下面中已经说的很详细了,这里我就不在说明了。

## 默认的数据源
master.datasource.url=jdbc:mysql://localhost:3306/springBoot?useUnicode=true&characterEncoding=utf8&allowMultiQueries=true
master.datasource.username=root
master.datasource.password=123456
master.datasource.driverClassName=com.mysql.jdbc.Driver
## 另一个的数据源
cluster.datasource.url=jdbc:mysql://localhost:3306/springBoot_test?useUnicode=true&characterEncoding=utf8
cluster.datasource.username=root
cluster.datasource.password=123456
cluster.datasource.driverClassName=com.mysql.jdbc.Driver
# 连接池的配置信息  
# 初始化大小,最小,最大  
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.initialSize=5  
spring.datasource.minIdle=5  
spring.datasource.maxActive=20  
# 配置获取连接等待超时的时间  
spring.datasource.maxWait=60000  
# 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒  
spring.datasource.timeBetweenEvictionRunsMillis=60000  
# 配置一个连接在池中最小生存的时间,单位是毫秒  
spring.datasource.minEvictableIdleTimeMillis=300000  
spring.datasource.validationQuery=SELECT 1 FROM DUAL  
spring.datasource.testWhileIdle=true  
spring.datasource.testOnBorrow=false  
spring.datasource.testOnReturn=false  
# 打开PSCache,并且指定每个连接上PSCache的大小  
spring.datasource.poolPreparedStatements=true  
spring.datasource.maxPoolPreparedStatementPerConnectionSize=20  
# 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙  
spring.datasource.filters=stat,wall,log4j  
# 通过connectProperties属性来打开mergeSql功能;慢SQL记录  
spring.datasource.connectionProperties=druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

成功添加了配置文件之后,我们再来编写Druid相关的类。

首先是 MasterDataSourceConfig.java 这个类,这个是默认的数据源配置类。

@Configuration
@MapperScan(basePackages = MasterDataSourceConfig.PACKAGE, sqlSessionFactoryRef = "masterSqlSessionFactory")
public class MasterDataSourceConfig {
    static final String PACKAGE = "com.pancm.dao.master";
    static final String MAPPER_LOCATION = "classpath:mapper/master/*.xml";
    @Value("${master.datasource.url}")  
    private String url;  
      
    @Value("${master.datasource.username}")  
    private String username;  
      
    @Value("${master.datasource.password}")  
    private String password;  
      
    @Value("${master.datasource.driverClassName}")  
    private String driverClassName;  
      
    
    
    
    @Value("${spring.datasource.initialSize}")  
    private int initialSize;  
      
    @Value("${spring.datasource.minIdle}")  
    private int minIdle;  
      
    @Value("${spring.datasource.maxActive}")  
    private int maxActive;  
      
    @Value("${spring.datasource.maxWait}")  
    private int maxWait;  
      
    @Value("${spring.datasource.timeBetweenEvictionRunsMillis}")  
    private int timeBetweenEvictionRunsMillis;  
      
    @Value("${spring.datasource.minEvictableIdleTimeMillis}")  
    private int minEvictableIdleTimeMillis;  
      
    @Value("${spring.datasource.validationQuery}")  
    private String validationQuery;  
      
    @Value("${spring.datasource.testWhileIdle}")  
    private boolean testWhileIdle;  
      
    @Value("${spring.datasource.testOnBorrow}")  
    private boolean testOnBorrow;  
      
    @Value("${spring.datasource.testOnReturn}")  
    private boolean testOnReturn;  
      
    @Value("${spring.datasource.poolPreparedStatements}")  
    private boolean poolPreparedStatements;  
      
    @Value("${spring.datasource.maxPoolPreparedStatementPerConnectionSize}")  
    private int maxPoolPreparedStatementPerConnectionSize;  
      
    @Value("${spring.datasource.filters}")  
    private String filters;  
      
    @Value("{spring.datasource.connectionProperties}")  
    private String connectionProperties;  
    
    
    @Bean(name = "masterDataSource")
    @Primary 
    public DataSource masterDataSource() {
        DruidDataSource dataSource = new DruidDataSource();
        dataSource.setUrl(url);  
        dataSource.setUsername(username);  
        dataSource.setPassword(password);  
        dataSource.setDriverClassName(driverClassName);  
          
        //具体配置 
        dataSource.setInitialSize(initialSize);  
        dataSource.setMinIdle(minIdle);  
        dataSource.setMaxActive(maxActive);  
        dataSource.setMaxWait(maxWait);  
        dataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);  
        dataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);  
        dataSource.setValidationQuery(validationQuery);  
        dataSource.setTestWhileIdle(testWhileIdle);  
        dataSource.setTestOnBorrow(testOnBorrow);  
        dataSource.setTestOnReturn(testOnReturn);  
        dataSource.setPoolPreparedStatements(poolPreparedStatements);  
        dataSource.setMaxPoolPreparedStatementPerConnectionSize(maxPoolPreparedStatementPerConnectionSize);  
        try {  
            dataSource.setFilters(filters);  
        } catch (SQLException e) { 
            e.printStackTrace();
        }  
        dataSource.setConnectionProperties(connectionProperties);  
        return dataSource;
    }
    @Bean(name = "masterTransactionManager")
    @Primary
    public DataSourceTransactionManager masterTransactionManager() {
        return new DataSourceTransactionManager(masterDataSource());
    }
    @Bean(name = "masterSqlSessionFactory")
    @Primary
    public SqlSessionFactory masterSqlSessionFactory(@Qualifier("masterDataSource") DataSource masterDataSource)
            throws Exception {
        final SqlSessionFactoryBean sessionFactory = new SqlSessionFactoryBean();
        sessionFactory.setDataSource(masterDataSource);
        sessionFactory.setMapperLocations(new PathMatchingResourcePatternResolver()
                .getResources(MasterDataSourceConfig.MAPPER_LOCATION));
        return sessionFactory.getObject();
    }
}

其中这两个注解说明下:

  • @Primary :标志这个 Bean 如果在多个同类 Bean 候选时,该 Bean

  • 优先被考虑。多数据源配置的时候注意,必须要有一个主数据源,用 @Primary 标志该 Bean。

  • @MapperScan : 扫描 Mapper 接口并容器管理。

需要注意的是 sqlSessionFactoryRef 表示定义一个唯一  SqlSessionFactory 实例。

上面的配置完之后,就可以将Druid作为连接池使用了。但是Druid并不简简单单的是个连接池,它也可以说是一个监控应用,它自带了web监控界面,可以很清晰的看到SQL相关信息。

SpringBoot 中运用 Druid 的监控作用,只需要编写 StatViewServletWebStatFilter 类,实现注册服务和过滤规则。这里我们可以将这两个写在一起,使用 @Configuration@Bean

为了方便理解,相关的配置说明也写在代码中了,这里就不再过多赘述了。

代码如下:

@Configuration
public class DruidConfiguration {
    @Bean
    public ServletRegistrationBean druidStatViewServle() {
        //注册服务
        ServletRegistrationBean servletRegistrationBean = new ServletRegistrationBean(
                new StatViewServlet(), "/druid/*");
        // 白名单(为空表示,所有的都可以访问,多个IP的时候用逗号隔开)
        servletRegistrationBean.addInitParameter("allow", "127.0.0.1");
        // IP黑名单 (存在共同时,deny优先于allow) 
        servletRegistrationBean.addInitParameter("deny", "127.0.0.2");
        // 设置登录的用户名和密码
        servletRegistrationBean.addInitParameter("loginUsername", "pancm");
        servletRegistrationBean.addInitParameter("loginPassword", "123456");
        // 是否能够重置数据.
        servletRegistrationBean.addInitParameter("resetEnable", "false");
        return servletRegistrationBean;
    }
    @Bean
    public FilterRegistrationBean druidStatFilter() {
        FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean(
                new WebStatFilter());
        // 添加过滤规则
        filterRegistrationBean.addUrlPatterns("/*");
        // 添加不需要忽略的格式信息
        filterRegistrationBean.addInitParameter("exclusions",
                "*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*");
        System.out.println("druid初始化成功!");
        return filterRegistrationBean;
    }
}

编写完之后,启动程序,在浏览器输入:http://127.0.0.1:8084/druid/index.html ,然后输入设置的用户名和密码,便可以访问Web界面了。

多数据源配置

在进行多数据源配置之前,先分别在 springBootspringBoot_testmysql 数据库中执行如下脚本。

-- springBoot库的脚本
CREATE TABLE `t_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '自增id',
  `name` varchar(10) DEFAULT NULL COMMENT '姓名',
  `age` int(2) DEFAULT NULL COMMENT '年龄',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=15 DEFAULT CHARSET=utf8
-- springBoot_test库的脚本
CREATE TABLE `t_student` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(16) DEFAULT NULL,
  `age` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8

注:为了偷懒,将两张表的结构弄成一样了!不过不影响测试!

application.properties 中已经配置这两个数据源的信息,上面已经贴出了一次配置,这里就不再贴了。

这里重点说下 第二个数据源的配置。和上面的 MasterDataSourceConfig.java 差不多,区别在与没有使用 @Primary 注解和名称不同而已。需要注意的是 MasterDataSourceConfig.java 对package和mapper的扫描是精确到目录的,这里的第二个数据源也是如此。那么代码如下:

@Configuration
@MapperScan(basePackages = ClusterDataSourceConfig.PACKAGE, sqlSessionFactoryRef = "clusterSqlSessionFactory")
public class ClusterDataSourceConfig {
 static final String PACKAGE = "com.pancm.dao.cluster";
 static final String MAPPER_LOCATION = "classpath:mapper/cluster/*.xml";
 @Value("${cluster.datasource.url}")
 private String url;
 @Value("${cluster.datasource.username}")
 private String username;
 @Value("${cluster.datasource.password}")
 private String password;
 @Value("${cluster.datasource.driverClassName}")
 private String driverClass;
 // 和MasterDataSourceConfig一样,这里略
 @Bean(name = "clusterDataSource")
 public DataSource clusterDataSource() {
     DruidDataSource dataSource = new DruidDataSource();
     dataSource.setUrl(url);  
     dataSource.setUsername(username);  
     dataSource.setPassword(password);  
     dataSource.setDriverClassName(driverClass);  
   
     // 和MasterDataSourceConfig一样,这里略 ...
     return dataSource;
 }
 @Bean(name = "clusterTransactionManager")
 public DataSourceTransactionManager clusterTransactionManager() {
     return new DataSourceTransactionManager(clusterDataSource());
 }
 @Bean(name = "clusterSqlSessionFactory")
 public SqlSessionFactory clusterSqlSessionFactory(@Qualifier("clusterDataSource") DataSource clusterDataSource)
         throws Exception {
     final SqlSessionFactoryBean sessionFactory = new SqlSessionFactoryBean();
     sessionFactory.setDataSource(clusterDataSource);
     sessionFactory.setMapperLocations(new PathMatchingResourcePatternResolver().getResources(ClusterDataSourceConfig.MAPPER_LOCATION));
     return sessionFactory.getObject();
 }
}

成功写完配置之后,启动程序,进行测试。

分别在 springBootspringBoot_test 库中使用接口进行添加数据。

t_user

POST http://localhost:8084/api/user
{"name":"张三","age":25}
{"name":"李四","age":25}
{"name":"王五","age":25}

t_student

POST http://localhost:8084/api/student
{"name":"学生A","age":16}
{"name":"学生B","age":17}
{"name":"学生C","age":18}

成功添加数据之后,然后进行调用不同的接口进行查询。

请求:

GET http://localhost:8084/api/user?name=李四

返回:

{
    "id": 2,
    "name": "李四",
    "age": 25
}

请求:

 GET http://localhost:8084/api/student?name=学生C

返回:

{
    "id": 1,
    "name": "学生C",
    "age": 16
}

通过数据可以看出,成功配置了多数据源了。

PageHelper 分页实现

PageHelper是Mybatis的一个分页插件,非常的好用!这里强烈推荐!!!

PageHelper的使用很简单,只需要在Maven中添加pagehelper这个依赖就可以了。

Maven的依赖如下:

   <dependency>
            <groupId>com.github.pagehelper</groupId>
            <artifactId>pagehelper-spring-boot-starter</artifactId>
            <version>1.2.3</version>
        </dependency>

注:这里我是用springBoot版的!也可以使用其它版本的。

添加依赖之后,只需要添加如下配置或代码就可以了。

第一种,在 application.propertiesapplication.yml 添加

  pagehelper:
  helperDialect: mysql
  offsetAsPageNum: true
  rowBoundsWithCount: true
  reasonable: false

第二种,在mybatis.xml配置中添加

  <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
    <property name="dataSource" ref="dataSource" />
    <!-- 扫描mapping.xml文件 -->
    <property name="mapperLocations" value="classpath:mapper/*.xml"></property>
    <!-- 配置分页插件 -->
     <property name="plugins">
        <array>
          <bean class="com.github.pagehelper.PageHelper">
            <property name="properties">
              <value>
                helperDialect=mysql
                offsetAsPageNum=true
                rowBoundsWithCount=true
                reasonable=false
              </value>
            </property>
          </bean>
        </array>
      </property>
  </bean>

第三种,在代码中添加,使用 @Bean 注解在启动程序的时候初始化。

 @Bean
  public PageHelper pageHelper(){
    PageHelper pageHelper = new PageHelper();
   Properties properties = new Properties();
   //数据库
   properties.setProperty("helperDialect", "mysql");
   //是否将参数offset作为PageNum使用
   properties.setProperty("offsetAsPageNum", "true");
   //是否进行count查询
   properties.setProperty("rowBoundsWithCount", "true");
   //是否分页合理化
   properties.setProperty("reasonable", "false");
   pageHelper.setProperties(properties);
  }

因为这里我们使用的是多数据源,所以这里的配置稍微有些不同。我们需要在 sessionFactory 这里配置。这里就对 MasterDataSourceConfig.java 进行相应的修改。在 masterSqlSessionFactory 方法中,添加如下代码。

    @Bean(name = "masterSqlSessionFactory")
    @Primary
    public SqlSessionFactory masterSqlSessionFactory(@Qualifier("masterDataSource") DataSource masterDataSource)
            throws Exception {
        final SqlSessionFactoryBean sessionFactory = new SqlSessionFactoryBean();
        sessionFactory.setDataSource(masterDataSource);
        sessionFactory.setMapperLocations(new PathMatchingResourcePatternResolver()
                .getResources(MasterDataSourceConfig.MAPPER_LOCATION));
        //分页插件
        Interceptor interceptor = new PageInterceptor();
        Properties properties = new Properties();
        //数据库
        properties.setProperty("helperDialect", "mysql");
        //是否将参数offset作为PageNum使用
        properties.setProperty("offsetAsPageNum", "true");
        //是否进行count查询
        properties.setProperty("rowBoundsWithCount", "true");
        //是否分页合理化
        properties.setProperty("reasonable", "false");
        interceptor.setProperties(properties);
        sessionFactory.setPlugins(new Interceptor[] {interceptor});
        
    return sessionFactory.getObject();
  }

注:其它的数据源也想进行分页的时候,参照上面的代码即可。

这里需要注意的是 reasonable 参数,表示分页合理化,默认值为false。如果该参数设置为 true 时,pageNum<=0 时会查询第一页,pageNum>pages(超过总数时),会查询最后一页。默认false 时,直接根据参数进行查询。

设置完PageHelper 之后,使用的话,只需要在查询的sql前面添加 PageHelper.startPage(pageNum,pageSize); ,如果是想知道总数的话,在查询的sql语句后买呢添加  page.getTotal() 就可以了。

代码示例:

public List<T> findByListEntity(T entity) {
        List<T> list = null;
        try {
            Page<?> page =PageHelper.startPage(1,2); 
            System.out.println(getClassName(entity)+"设置第一页两条数据!");
            list = getMapper().findByListEntity(entity);
            System.out.println("总共有:"+page.getTotal()+"条数据,实际返回:"+list.size()+"两条数据!");
        } catch (Exception e) {
            logger.error("查询"+getClassName(entity)+"失败!原因是:",e);
        }
        return list;
    }

代码编写完毕之后,开始进行最后的测试。

查询 t_user 表的所有的数据,并进行分页。

请求:

GET http://localhost:8084/api/user

返回:

[
    {
        "id": 1,
        "name": "张三",
        "age": 25
    },
    {
        "id": 2,
        "name": "李四",
        "age": 25
    }
]

控制台打印:

开始查询...
User设置第一页两条数据!
2018-04-27 19:55:50.769 DEBUG 6152 --- [io-8084-exec-10] c.p.d.m.UserDao.findByListEntity_COUNT   : ==>  Preparing: SELECT count(0) FROM t_user WHERE 1 = 1 
2018-04-27 19:55:50.770 DEBUG 6152 --- [io-8084-exec-10] c.p.d.m.UserDao.findByListEntity_COUNT   : ==> Parameters: 
2018-04-27 19:55:50.771 DEBUG 6152 --- [io-8084-exec-10] c.p.d.m.UserDao.findByListEntity_COUNT   : <==      Total: 1
2018-04-27 19:55:50.772 DEBUG 6152 --- [io-8084-exec-10] c.p.dao.master.UserDao.findByListEntity  : ==>  Preparing: select id, name, age from t_user where 1=1 LIMIT ? 
2018-04-27 19:55:50.773 DEBUG 6152 --- [io-8084-exec-10] c.p.dao.master.UserDao.findByListEntity  : ==> Parameters: 2(Integer)
2018-04-27 19:55:50.774 DEBUG 6152 --- [io-8084-exec-10] c.p.dao.master.UserDao.findByListEntity  : <==      Total: 2
总共有:3条数据,实际返回:2两条数据!

查询 t_student 表的所有的数据,并进行分页。

请求:

GET  http://localhost:8084/api/student

返回:

[
    {
        "id": 1,
        "name": "学生A",
        "age": 16
    },
    {
        "id": 2,
        "name": "学生B",
        "age": 17
    }
]

控制台打印:

开始查询...
Studnet设置第一页两条数据!
2018-04-27 19:54:56.155 DEBUG 6152 --- [nio-8084-exec-8] c.p.d.c.S.findByListEntity_COUNT         : ==>  Preparing: SELECT count(0) FROM t_student WHERE 1 = 1 
2018-04-27 19:54:56.155 DEBUG 6152 --- [nio-8084-exec-8] c.p.d.c.S.findByListEntity_COUNT         : ==> Parameters: 
2018-04-27 19:54:56.156 DEBUG 6152 --- [nio-8084-exec-8] c.p.d.c.S.findByListEntity_COUNT         : <==      Total: 1
2018-04-27 19:54:56.157 DEBUG 6152 --- [nio-8084-exec-8] c.p.d.c.StudentDao.findByListEntity      : ==>  Preparing: select id, name, age from t_student where 1=1 LIMIT ? 
2018-04-27 19:54:56.157 DEBUG 6152 --- [nio-8084-exec-8] c.p.d.c.StudentDao.findByListEntity      : ==> Parameters: 2(Integer)
2018-04-27 19:54:56.157 DEBUG 6152 --- [nio-8084-exec-8] c.p.d.c.StudentDao.findByListEntity      : <==      Total: 2
总共有:3条数据,实际返回:2两条数据!

查询完毕之后,我们再来看Druid 的监控界面。在浏览器输入:http://127.0.0.1:8084/druid/index.html

SpringBoot+Mybatis+ Druid+PageHelper 实现多数据源并分页

可以很清晰的看到操作记录!

如果想知道更多的Druid相关知识,可以查看官方文档!

结语

这篇终于写完了,在进行代码编写的时候,碰到过很多问题,然后慢慢的尝试和找资料解决了。本篇文章只是很浅的介绍了这些相关的使用,在实际的应用可能会更复杂。如果有有更好的想法和建议,欢迎留言进行讨论!

原文  https://blog.51cto.com/14227759/2377733
正文到此结束
Loading...